/** * $RCSfile$ * $Revision$ * $Date$ * * Copyright 2003-2007 Jive Software. * * All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.jivesoftware.smack; import org.jivesoftware.smack.debugger.SmackDebugger; import org.jivesoftware.smack.filter.PacketFilter; import org.jivesoftware.smack.packet.Packet; import org.jivesoftware.smack.packet.Presence; import org.jivesoftware.smack.packet.XMPPError; import org.jivesoftware.smack.util.StringUtils; import javax.net.ssl.SSLContext; import javax.net.ssl.SSLSocket; import java.io.*; import java.lang.reflect.Constructor; import java.lang.reflect.Method; import java.net.Socket; import java.net.UnknownHostException; import java.util.Collection; import java.util.Set; import java.util.concurrent.CopyOnWriteArraySet; import java.util.concurrent.atomic.AtomicInteger; /** * Creates a connection to a XMPP server. A simple use of this API might * look like the following: *
* // Create a connection to the igniterealtime.org XMPP server. * XMPPConnection con = new XMPPConnection("igniterealtime.org"); * // Connect to the server * con.connect(); * // Most servers require you to login before performing other tasks. * con.login("jsmith", "mypass"); * // Start a new conversation with John Doe and send him a message. * Chat chat = connection.getChatManager().createChat("jdoe@igniterealtime.org", new MessageListener() { * * public void processMessage(Chat chat, Message message) { * // Print out any messages we get back to standard out. * System.out.println("Received message: " + message); * } * }); * chat.sendMessage("Howdy!"); * // Disconnect from the server * con.disconnect(); ** * XMPPConnections can be reused between connections. This means that an XMPPConnection * may be connected, disconnected and then connected again. Listeners of the XMPPConnection * will be retained accross connections.
* * If a connected XMPPConnection gets disconnected abruptly then it will try to reconnect * again. To stop the reconnection process, use {@link #disconnect()}. Once stopped * you can use {@link #connect()} to manually connect to the server. * * @author Matt Tucker */ public class XMPPConnection { /** * Value that indicates whether debugging is enabled. When enabled, a debug * window will apear for each new connection that will contain the following * information:
* * This is the simplest constructor for connecting to an XMPP server. Alternatively, * you can get fine-grained control over connection settings using the * {@link #XMPPConnection(ConnectionConfiguration)} constructor.
* * Note that XMPPConnection constructors do not establish a connection to the server * and you must call {@link #connect()}. * * @param serviceName the name of the XMPP server to connect to; e.g. example.com. */ public XMPPConnection(String serviceName) { // Create the configuration for this new connection ConnectionConfiguration config = new ConnectionConfiguration(serviceName); config.setCompressionEnabled(false); config.setSASLAuthenticationEnabled(true); config.setDebuggerEnabled(DEBUG_ENABLED); this.configuration = config; } /** * Creates a new XMPP connection using the specified connection configuration.
* * Manually specifying connection configuration information is suitable for * advanced users of the API. In many cases, using the * {@link #XMPPConnection(String)} constructor is a better approach.
* * Note that XMPPConnection constructors do not establish a connection to the server * and you must call {@link #connect()}. * * @param config the connection configuration. */ public XMPPConnection(ConnectionConfiguration config) { this.configuration = config; } /** * Returns the connection ID for this connection, which is the value set by the server * when opening a XMPP stream. If the server does not set a connection ID, this value * will be null. This value will be null if not connected to the server. * * @return the ID of this connection returned from the XMPP server or null if * not connected to the server. */ public String getConnectionID() { if (!isConnected()) { return null; } return connectionID; } /** * Returns the name of the service provided by the XMPP server for this connection. After * authenticating with the server the returned value may be different. * * @return the name of the service provided by the XMPP server. */ public String getServiceName() { return serviceName; } /** * Returns the host name of the server where the XMPP server is running. This would be the * IP address of the server or a name that may be resolved by a DNS server. * * @return the host name of the server where the XMPP server is running. */ public String getHost() { return host; } /** * Returns the port number of the XMPP server for this connection. The default port * for normal connections is 5222. The default port for SSL connections is 5223. * * @return the port number of the XMPP server. */ public int getPort() { return port; } /** * Returns the full XMPP address of the user that is logged in to the connection or * null if not logged in yet. An XMPP address is in the form * username@server/resource. * * @return the full XMPP address of the user logged in. */ public String getUser() { if (!isAuthenticated()) { return null; } return user; } /** * Logs in to the server using the strongest authentication mode supported by * the server, then sets presence to available. If more than five seconds * (default timeout) elapses in each step of the authentication process without * a response from the server, or if an error occurs, a XMPPException will be thrown. * * @param username the username. * @param password the password. * @throws XMPPException if an error occurs. */ public void login(String username, String password) throws XMPPException { login(username, password, "Smack"); } /** * Logs in to the server using the strongest authentication mode supported by * the server, then sets presence to available. If more than five seconds * (default timeout) elapses in each step of the authentication process without * a response from the server, or if an error occurs, a XMPPException will be thrown. * * @param username the username. * @param password the password. * @param resource the resource. * @throws XMPPException if an error occurs. * @throws IllegalStateException if not connected to the server, or already logged in * to the serrver. */ public synchronized void login(String username, String password, String resource) throws XMPPException { login(username, password, resource, true); } /** * Logs in to the server using the strongest authentication mode supported by * the server. If the server supports SASL authentication then the user will be * authenticated using SASL if not Non-SASL authentication will be tried. An available * presence may optionally be sent. If sendPresence * is false, a presence packet must be sent manually later. If more than five seconds * (default timeout) elapses in each step of the authentication process without a * response from the server, or if an error occurs, a XMPPException will be thrown.
* * Before logging in (i.e. authenticate) to the server the connection must be connected. * For compatibility and easiness of use the connection will automatically connect to the * server if not already connected. * * @param username the username. * @param password the password. * @param resource the resource. * @param sendPresence if true an available presence will be sent automatically * after login is completed. * @throws XMPPException if an error occurs. * @throws IllegalStateException if not connected to the server, or already logged in * to the serrver. */ public synchronized void login(String username, String password, String resource, boolean sendPresence) throws XMPPException { if (!isConnected()) { throw new IllegalStateException("Not connected to server."); } if (authenticated) { throw new IllegalStateException("Already logged in to server."); } // Do partial version of nameprep on the username. username = username.toLowerCase().trim(); String response; if (configuration.isSASLAuthenticationEnabled() && saslAuthentication.hasNonAnonymousAuthentication()) { // Authenticate using SASL response = saslAuthentication.authenticate(username, password, resource); } else { // Authenticate using Non-SASL response = new NonSASLAuthentication(this).authenticate(username, password, resource); } // Set the user. if (response != null) { this.user = response; // Update the serviceName with the one returned by the server this.serviceName = StringUtils.parseServer(response); } else { this.user = username + "@" + this.serviceName; if (resource != null) { this.user += "/" + resource; } } // If compression is enabled then request the server to use stream compression if (configuration.isCompressionEnabled()) { useCompression(); } // Create the roster if it is not a reconnection. if (this.roster == null) { this.roster = new Roster(this); } roster.reload(); // Set presence to online. if (sendPresence) { packetWriter.sendPacket(new Presence(Presence.Type.available)); } // Indicate that we're now authenticated. authenticated = true; anonymous = false; // Stores the autentication for future reconnection this.getConfiguration().setLoginInfo(username, password, resource, sendPresence); // If debugging is enabled, change the the debug window title to include the // name we are now logged-in as. // If DEBUG_ENABLED was set to true AFTER the connection was created the debugger // will be null if (configuration.isDebuggerEnabled() && debugger != null) { debugger.userHasLogged(user); } } /** * Logs in to the server anonymously. Very few servers are configured to support anonymous * authentication, so it's fairly likely logging in anonymously will fail. If anonymous login * does succeed, your XMPP address will likely be in the form "server/123ABC" (where "123ABC" * is a random value generated by the server). * * @throws XMPPException if an error occurs or anonymous logins are not supported by the server. * @throws IllegalStateException if not connected to the server, or already logged in * to the serrver. */ public synchronized void loginAnonymously() throws XMPPException { if (!isConnected()) { throw new IllegalStateException("Not connected to server."); } if (authenticated) { throw new IllegalStateException("Already logged in to server."); } String response; if (configuration.isSASLAuthenticationEnabled() && saslAuthentication.hasAnonymousAuthentication()) { response = saslAuthentication.authenticateAnonymously(); } else { // Authenticate using Non-SASL response = new NonSASLAuthentication(this).authenticateAnonymously(); } // Set the user value. this.user = response; // Update the serviceName with the one returned by the server this.serviceName = StringUtils.parseServer(response); // If compression is enabled then request the server to use stream compression if (configuration.isCompressionEnabled()) { useCompression(); } // Anonymous users can't have a roster. roster = null; // Set presence to online. packetWriter.sendPacket(new Presence(Presence.Type.available)); // Indicate that we're now authenticated. authenticated = true; anonymous = true; // If debugging is enabled, change the the debug window title to include the // name we are now logged-in as. // If DEBUG_ENABLED was set to true AFTER the connection was created the debugger // will be null if (configuration.isDebuggerEnabled() && debugger != null) { debugger.userHasLogged(user); } } /** * Returns the roster for the user logged into the server. If the user has not yet * logged into the server (or if the user is logged in anonymously), this method will return * null. * * @return the user's roster, or null if the user has not logged in yet. */ public Roster getRoster() { if (roster == null) { return null; } // If this is the first time the user has asked for the roster after calling // login, we want to wait for the server to send back the user's roster. This // behavior shields API users from having to worry about the fact that roster // operations are asynchronous, although they'll still have to listen for // changes to the roster. Note: because of this waiting logic, internal // Smack code should be wary about calling the getRoster method, and may need to // access the roster object directly. if (!roster.rosterInitialized) { try { synchronized (roster) { long waitTime = SmackConfiguration.getPacketReplyTimeout(); long start = System.currentTimeMillis(); while (!roster.rosterInitialized) { if (waitTime <= 0) { break; } roster.wait(waitTime); long now = System.currentTimeMillis(); waitTime -= now - start; start = now; } } } catch (InterruptedException ie) { // Ignore. } } return roster; } /** * Returns an account manager instance for this connection. * * @return an account manager for this connection. */ public synchronized AccountManager getAccountManager() { if (accountManager == null) { accountManager = new AccountManager(this); } return accountManager; } /** * Returns a chat manager instance for this connection. The ChatManager manages all incoming and * outgoing chats on the current connection. * * @return a chat manager instance for this connection. */ public synchronized ChatManager getChatManager() { if(this.chatManager == null) { this.chatManager = new ChatManager(this); } return this.chatManager; } /** * Returns true if currently connected to the XMPP server. * * @return true if connected. */ public boolean isConnected() { return connected; } /** * Returns true if the connection is a secured one, such as an SSL connection or * if TLS was negotiated successfully. * * @return true if a secure connection to the server. */ public boolean isSecureConnection() { return isUsingTLS(); } /** * Returns true if currently authenticated by successfully calling the login method. * * @return true if authenticated. */ public boolean isAuthenticated() { return authenticated; } /** * Returns true if currently authenticated anonymously. * * @return true if authenticated anonymously. */ public boolean isAnonymous() { return anonymous; } /** * Closes the connection by setting presence to unavailable then closing the stream to * the XMPP server. The shutdown logic will be used during a planned disconnection or when * dealing with an unexpected disconnection. Unlike {@link #disconnect()} the connection's * packet reader, packet writer, and {@link Roster} will not be removed; thus * connection's state is kept. * * @param unavailablePresence the presence packet to send during shutdown. */ protected void shutdown(Presence unavailablePresence) { // Set presence to offline. packetWriter.sendPacket(unavailablePresence); this.setWasAuthenticated(authenticated); authenticated = false; connected = false; packetReader.shutdown(); packetWriter.shutdown(); // Wait 150 ms for processes to clean-up, then shutdown. try { Thread.sleep(150); } catch (Exception e) { // Ignore. } // Close down the readers and writers. if (reader != null) { try { reader.close(); } catch (Throwable ignore) { /* ignore */ } reader = null; } if (writer != null) { try { writer.close(); } catch (Throwable ignore) { /* ignore */ } writer = null; } try { socket.close(); } catch (Exception e) { // Ignore. } saslAuthentication.init(); } /** * Closes the connection by setting presence to unavailable then closing the stream to * the XMPP server. The XMPPConnection can still be used for connecting to the server * again.
* * This method cleans up all resources used by the connection. Therefore, the roster, * listeners and other stateful objects cannot be re-used by simply calling connect() * on this connection again. This is unlike the behavior during unexpected disconnects * (and subsequent connections). In that case, all state is preserved to allow for * more seamless error recovery. */ public void disconnect() { disconnect(new Presence(Presence.Type.unavailable)); } /** * Closes the connection. A custom unavailable presence is sent to the server, followed * by closing the stream. The XMPPConnection can still be used for connecting to the server * again. A custom unavilable presence is useful for communicating offline presence * information such as "On vacation". Typically, just the status text of the presence * packet is set with online information, but most XMPP servers will deliver the full * presence packet with whatever data is set.
*
* This method cleans up all resources used by the connection. Therefore, the roster,
* listeners and other stateful objects cannot be re-used by simply calling connect()
* on this connection again. This is unlike the behavior during unexpected disconnects
* (and subsequent connections). In that case, all state is preserved to allow for
* more seamless error recovery.
*
* @param unavailablePresence the presence packet to send during shutdown.
*/
public void disconnect(Presence unavailablePresence) {
// If not connected, ignore this request.
if (packetReader == null || packetWriter == null) {
return;
}
shutdown(unavailablePresence);
if (roster != null) {
roster.cleanup();
roster = null;
}
wasAuthenticated = false;
packetWriter.cleanup();
packetWriter = null;
packetReader.cleanup();
packetReader = null;
}
/**
* Sends the specified packet to the server.
*
* @param packet the packet to send.
*/
public void sendPacket(Packet packet) {
if (!isConnected()) {
throw new IllegalStateException("Not connected to server.");
}
if (packet == null) {
throw new NullPointerException("Packet is null.");
}
packetWriter.sendPacket(packet);
}
/**
* Registers a packet listener with this connection. A packet filter determines
* which packets will be delivered to the listener.
*
* @param packetListener the packet listener to notify of new packets.
* @param packetFilter the packet filter to use.
*/
public void addPacketListener(PacketListener packetListener, PacketFilter packetFilter) {
if (!isConnected()) {
throw new IllegalStateException("Not connected to server.");
}
packetReader.addPacketListener(packetListener, packetFilter);
}
/**
* Removes a packet listener from this connection.
*
* @param packetListener the packet listener to remove.
*/
public void removePacketListener(PacketListener packetListener) {
packetReader.removePacketListener(packetListener);
}
/**
* Registers a packet listener with this connection. The listener will be
* notified of every packet that this connection sends. A packet filter determines
* which packets will be delivered to the listener. Note that the thread
* that writes packets will be used to invoke the listeners. Therefore, each
* packet listener should complete all operations quickly or use a different
* thread for processing.
*
* @param packetListener the packet listener to notify of sent packets.
* @param packetFilter the packet filter to use.
*/
public void addPacketWriterListener(PacketListener packetListener, PacketFilter packetFilter) {
if (!isConnected()) {
throw new IllegalStateException("Not connected to server.");
}
packetWriter.addPacketListener(packetListener, packetFilter);
}
/**
* Removes a packet listener from this connection.
*
* @param packetListener the packet listener to remove.
*/
public void removePacketWriterListener(PacketListener packetListener) {
packetWriter.removePacketListener(packetListener);
}
/**
* Registers a packet interceptor with this connection. The interceptor will be
* invoked every time a packet is about to be sent by this connection. Interceptors
* may modify the packet to be sent. A packet filter determines which packets
* will be delivered to the interceptor.
*
* @param packetInterceptor the packet interceptor to notify of packets about to be sent.
* @param packetFilter the packet filter to use.
*/
public void addPacketWriterInterceptor(PacketInterceptor packetInterceptor,
PacketFilter packetFilter) {
if (!isConnected()) {
throw new IllegalStateException("Not connected to server.");
}
packetWriter.addPacketInterceptor(packetInterceptor, packetFilter);
}
/**
* Removes a packet interceptor.
*
* @param packetInterceptor the packet interceptor to remove.
*/
public void removePacketWriterInterceptor(PacketInterceptor packetInterceptor) {
packetWriter.removePacketInterceptor(packetInterceptor);
}
/**
* Creates a new packet collector for this connection. A packet filter determines
* which packets will be accumulated by the collector.
*
* @param packetFilter the packet filter to use.
* @return a new packet collector.
*/
public PacketCollector createPacketCollector(PacketFilter packetFilter) {
return packetReader.createPacketCollector(packetFilter);
}
/**
* Adds a connection listener to this connection that will be notified when
* the connection closes or fails. The connection needs to already be connected
* or otherwise an IllegalStateException will be thrown.
*
* @param connectionListener a connection listener.
*/
public void addConnectionListener(ConnectionListener connectionListener) {
if (!isConnected()) {
throw new IllegalStateException("Not connected to server.");
}
if (connectionListener == null) {
return;
}
if (!packetReader.connectionListeners.contains(connectionListener)) {
packetReader.connectionListeners.add(connectionListener);
}
}
/**
* Removes a connection listener from this connection.
*
* @param connectionListener a connection listener.
*/
public void removeConnectionListener(ConnectionListener connectionListener) {
packetReader.connectionListeners.remove(connectionListener);
}
/**
* Adds a new listener that will be notified when new XMPPConnections are created. Note
* that newly created connections will not be actually connected to the server.
*
* @param connectionCreationListener a listener interested on new connections.
*/
public static void addConnectionCreationListener(
ConnectionCreationListener connectionCreationListener) {
connectionEstablishedListeners.add(connectionCreationListener);
}
/**
* Removes a listener that was interested in connection creation events.
*
* @param connectionCreationListener a listener interested on new connections.
*/
public static void removeConnectionCreationListener(
ConnectionCreationListener connectionCreationListener) {
connectionEstablishedListeners.remove(connectionCreationListener);
}
private void connectUsingConfiguration(ConnectionConfiguration config) throws XMPPException {
this.host = config.getHost();
this.port = config.getPort();
try {
if (config.getSocketFactory() == null) {
this.socket = new Socket(host, port);
}
else {
this.socket = config.getSocketFactory().createSocket(host, port);
}
}
catch (UnknownHostException uhe) {
String errorMessage = "Could not connect to " + host + ":" + port + ".";
throw new XMPPException(errorMessage, new XMPPError(
XMPPError.Condition.remote_server_timeout, errorMessage),
uhe);
}
catch (IOException ioe) {
String errorMessage = "XMPPError connecting to " + host + ":"
+ port + ".";
throw new XMPPException(errorMessage, new XMPPError(
XMPPError.Condition.remote_server_error, errorMessage), ioe);
}
this.serviceName = config.getServiceName();
initConnection();
}
/**
* Initializes the connection by creating a packet reader and writer and opening a
* XMPP stream to the server.
*
* @throws XMPPException if establishing a connection to the server fails.
*/
private void initConnection() throws XMPPException {
boolean isFirstInitialization = packetReader == null || packetWriter == null;
if (!isFirstInitialization) {
usingCompression = false;
}
// Set the reader and writer instance variables
initReaderAndWriter();
try {
if (isFirstInitialization) {
packetWriter = new PacketWriter(this);
packetReader = new PacketReader(this);
// If debugging is enabled, we should start the thread that will listen for
// all packets and then log them.
if (configuration.isDebuggerEnabled()) {
packetReader.addPacketListener(debugger.getReaderListener(), null);
if (debugger.getWriterListener() != null) {
packetWriter.addPacketListener(debugger.getWriterListener(), null);
}
}
}
else {
packetWriter.init();
packetReader.init();
}
// Start the packet writer. This will open a XMPP stream to the server
packetWriter.startup();
// Start the packet reader. The startup() method will block until we
// get an opening stream packet back from server.
packetReader.startup();
// Make note of the fact that we're now connected.
connected = true;
// Start keep alive process (after TLS was negotiated - if available)
packetWriter.startKeepAliveProcess();
if (isFirstInitialization) {
// Notify listeners that a new connection has been established
for (ConnectionCreationListener listener : connectionEstablishedListeners) {
listener.connectionCreated(this);
}
}
else {
packetReader.notifyReconnection();
}
}
catch (XMPPException ex) {
// An exception occurred in setting up the connection. Make sure we shut down the
// readers and writers and close the socket.
if (packetWriter != null) {
try {
packetWriter.shutdown();
}
catch (Throwable ignore) { /* ignore */ }
packetWriter = null;
}
if (packetReader != null) {
try {
packetReader.shutdown();
}
catch (Throwable ignore) { /* ignore */ }
packetReader = null;
}
if (reader != null) {
try {
reader.close();
}
catch (Throwable ignore) { /* ignore */ }
reader = null;
}
if (writer != null) {
try {
writer.close();
}
catch (Throwable ignore) { /* ignore */}
writer = null;
}
if (socket != null) {
try {
socket.close();
}
catch (Exception e) { /* ignore */ }
socket = null;
}
this.setWasAuthenticated(authenticated);
authenticated = false;
connected = false;
throw ex; // Everything stoppped. Now throw the exception.
}
}
private void initReaderAndWriter() throws XMPPException {
try {
if (!usingCompression) {
reader =
new BufferedReader(new InputStreamReader(socket.getInputStream(), "UTF-8"));
writer = new BufferedWriter(
new OutputStreamWriter(socket.getOutputStream(), "UTF-8"));
}
else {
try {
Class> zoClass = Class.forName("com.jcraft.jzlib.ZOutputStream");
Constructor> constructor =
zoClass.getConstructor(OutputStream.class, Integer.TYPE);
Object out = constructor.newInstance(socket.getOutputStream(), 9);
Method method = zoClass.getMethod("setFlushMode", Integer.TYPE);
method.invoke(out, 1);
writer =
new BufferedWriter(new OutputStreamWriter((OutputStream) out, "UTF-8"));
Class> ziClass = Class.forName("com.jcraft.jzlib.ZInputStream");
constructor = ziClass.getConstructor(InputStream.class);
Object in = constructor.newInstance(socket.getInputStream());
method = ziClass.getMethod("setFlushMode", Integer.TYPE);
method.invoke(in, 1);
reader = new BufferedReader(new InputStreamReader((InputStream) in, "UTF-8"));
}
catch (Exception e) {
e.printStackTrace();
reader = new BufferedReader(
new InputStreamReader(socket.getInputStream(), "UTF-8"));
writer = new BufferedWriter(
new OutputStreamWriter(socket.getOutputStream(), "UTF-8"));
}
}
}
catch (IOException ioe) {
throw new XMPPException(
"XMPPError establishing connection with server.",
new XMPPError(XMPPError.Condition.remote_server_error,
"XMPPError establishing connection with server."),
ioe);
}
// If debugging is enabled, we open a window and write out all network traffic.
if (configuration.isDebuggerEnabled()) {
if (debugger == null) {
// Detect the debugger class to use.
String className = null;
// Use try block since we may not have permission to get a system
// property (for example, when an applet).
try {
className = System.getProperty("smack.debuggerClass");
}
catch (Throwable t) {
// Ignore.
}
Class> debuggerClass = null;
if (className != null) {
try {
debuggerClass = Class.forName(className);
}
catch (Exception e) {
e.printStackTrace();
}
}
if (debuggerClass == null) {
try {
debuggerClass =
Class.forName("org.jivesoftware.smackx.debugger.EnhancedDebugger");
}
catch (Exception ex) {
try {
debuggerClass =
Class.forName("org.jivesoftware.smack.debugger.LiteDebugger");
}
catch (Exception ex2) {
ex2.printStackTrace();
}
}
}
// Create a new debugger instance. If an exception occurs then disable the debugging
// option
try {
Constructor> constructor = debuggerClass
.getConstructor(XMPPConnection.class, Writer.class, Reader.class);
debugger = (SmackDebugger) constructor.newInstance(this, writer, reader);
reader = debugger.getReader();
writer = debugger.getWriter();
}
catch (Exception e) {
e.printStackTrace();
DEBUG_ENABLED = false;
}
}
else {
// Obtain new reader and writer from the existing debugger
reader = debugger.newConnectionReader(reader);
writer = debugger.newConnectionWriter(writer);
}
}
}
/***********************************************
* TLS code below
**********************************************/
/**
* Returns true if the connection to the server has successfully negotiated TLS. Once TLS
* has been negotiatied the connection has been secured.
*
* @return true if the connection to the server has successfully negotiated TLS.
*/
public boolean isUsingTLS() {
return usingTLS;
}
/**
* Returns the SASLAuthentication manager that is responsible for authenticating with
* the server.
*
* @return the SASLAuthentication manager that is responsible for authenticating with
* the server.
*/
public SASLAuthentication getSASLAuthentication() {
return saslAuthentication;
}
/**
* Returns the configuration used to connect to the server.
*
* @return the configuration used to connect to the server.
*/
protected ConnectionConfiguration getConfiguration() {
return configuration;
}
/**
* Notification message saying that the server supports TLS so confirm the server that we
* want to secure the connection.
*
* @param required true when the server indicates that TLS is required.
*/
void startTLSReceived(boolean required) {
if (required && configuration.getSecurityMode() ==
ConnectionConfiguration.SecurityMode.disabled)
{
packetReader.notifyConnectionError(new IllegalStateException(
"TLS required by server but not allowed by connection configuration"));
return;
}
if (configuration.getSecurityMode() == ConnectionConfiguration.SecurityMode.disabled) {
// Do not secure the connection using TLS since TLS was disabled
return;
}
try {
writer.write("
*
* Note: to use stream compression the smackx.jar file has to be present in the classpath.
*
* @return true if network traffic is being compressed.
*/
public boolean isUsingCompression() {
return usingCompression;
}
/**
* Starts using stream compression that will compress network traffic. Traffic can be
* reduced up to 90%. Therefore, stream compression is ideal when using a slow speed network
* connection. However, the server and the client will need to use more CPU time in order to
* un/compress network data so under high load the server performance might be affected.
*
* Stream compression has to have been previously offered by the server. Currently only the
* zlib method is supported by the client. Stream compression negotiation has to be done
* before authentication took place.
*
* Note: to use stream compression the smackx.jar file has to be present in the classpath.
*
* @return true if stream compression negotiation was successful.
*/
private boolean useCompression() {
// If stream compression was offered by the server and we want to use
// compression then send compression request to the server
if (authenticated) {
throw new IllegalStateException("Compression should be negotiated before authentication.");
}
try {
Class.forName("com.jcraft.jzlib.ZOutputStream");
}
catch (ClassNotFoundException e) {
throw new IllegalStateException("Cannot use compression. Add smackx.jar to the classpath");
}
if (hasAvailableCompressionMethod("zlib")) {
requestStreamCompression();
// Wait until compression is being used or a timeout happened
synchronized (this) {
try {
this.wait(SmackConfiguration.getPacketReplyTimeout() * 5);
}
catch (InterruptedException e) {
// Ignore.
}
}
return usingCompression;
}
return false;
}
/**
* Request the server that we want to start using stream compression. When using TLS
* then negotiation of stream compression can only happen after TLS was negotiated. If TLS
* compression is being used the stream compression should not be used.
*/
private void requestStreamCompression() {
try {
writer.write("
*
* Listeners will be preserved from a previous connection if the reconnection
* occurs after an abrupt termination.
*
* @throws XMPPException if an error occurs while trying to establish the connection.
* Two possible errors can occur which will be wrapped by an XMPPException --
* UnknownHostException (XMPP error code 504), and IOException (XMPP error code
* 502). The error codes and wrapped exceptions can be used to present more
* appropiate error messages to end-users.
*/
public void connect() throws XMPPException {
// Stablishes the connection, readers and writers
connectUsingConfiguration(configuration);
// Automatically makes the login if the user was previouslly connected successfully
// to the server and the connection was terminated abruptly
if (connected && wasAuthenticated) {
// Make the login
try {
if (isAnonymous()) {
// Make the anonymous login
loginAnonymously();
} else {
login(getConfiguration().getUsername(), getConfiguration().getPassword(),
getConfiguration().getResource(), getConfiguration().isSendPresence());
}
} catch (XMPPException e) {
e.printStackTrace();
}
}
}
/**
* Sets whether the connection has already logged in the server.
*
* @param wasAuthenticated true if the connection has already been authenticated.
*/
private void setWasAuthenticated(boolean wasAuthenticated) {
if (!this.wasAuthenticated) {
this.wasAuthenticated = wasAuthenticated;
}
}
}