# Zooming in: Packet structure of certificates and keys
Now that we've established these concepts, and the components that OpenPGP certificates consist of, let's look at the internal details of an example certificate.
## A very minimal OpenPGP certificate
First, we'll look at a very minimal version of a "public key" variant of [](alice_priv). That is, an OpenPGP certificate (which doesn't contain private key material).
In this section, we use the Sequoia-PGP tool `sq` to handle and transform our example OpenPGP key, and to inspect internal OpenPGP packet data.
Starting from [Alice's OpenPGP "private key"](alice_priv), we first produce the corresponding "public key", or certificate:
```text
$ sq key extract-cert alice.priv > alice.pub
```
(split_alice)=
### Splitting the OpenPGP certificate into packets
One way to produce a very minimal version of Alice's certificate is to split the data in `alice.pub` into its component packets, and join only the relevant ones back together into a new variant.
```text
$ sq packet split alice.pub
```
With this command, `sq` generates a set of files, each containing an individual OpenPGP packet of the original full certificate in `alice.pub`:
```text
alice.pub-0--PublicKey
alice.pub-1--Signature
alice.pub-2--UserID
alice.pub-3--Signature
alice.pub-4--PublicSubkey
alice.pub-5--Signature
alice.pub-6--PublicSubkey
alice.pub-7--Signature
alice.pub-8--PublicSubkey
alice.pub-9--Signature
```
```{admonition} VISUAL
:class: warning
Show a very abstract diagram of the packets of Alice's OpenPGP certificate (above):
- Public-Key packet
- Direct Key Signature
- User ID
- Certifying self-signature for User ID
- Public-Subkey packet
- Subkey binding signature
- Public-Subkey packet
- Subkey binding signature
- Public-Subkey packet
- Subkey binding signature
```
### Joining packets into an OpenPGP certificate
For our first step, we'll use just the first two of the packets of Alice's certificate, and join them together as a very minimal certificate:
This version of Alice's certificate contains just two packets:
- The [*Public-Key packet*](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-public-key-packet-formats) for the primary key, and
- A [*Direct Key Signature*](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#sigtype-direct-key) (a self-signature that binds metadata to the primary key).
This is the shape of the packets we'll be looking at, in the following two sections:
```{figure} diag/pubcert-minimal.png
:width: 40%
A minimal OpenPGP certificate, visualized
```
```{admonition} VISUAL
:class: warning
This diagram needs adjustments about
- what exactly is signed
- fix naming of fields?
We could show repeat-copies of the individual packet visualization again, below for each packet-related section.
```
In the real world, you won't usually encounter an OpenPGP certificate that is quite this minimal. However, this is technically a valid OpenPGP certificate (and we'll add more components to it, later in this section).
In ASCII-armored representation, this very minimal key looks like this:
We'll now decode this OpenPGP data, and inspect the two packets in detail.
To inspect the internal structure of the OpenPGP data, we run the Sequoia-PGP tool `sq`, using the `packet dump` subcommand. The output of `sq` is one block of text, but to discuss the content of each packet we'll break the output up into sections here:
```text
$ sq packet dump --hex alice_minimal.pub
```
(public_key)=
### Public-Key packet
The output now starts with a (primary) [Public-Key packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-public-key-packet-formats):
```text
Public-Key Packet, new CTB, 2 header bytes + 42 bytes
00000010 af ab 15 f7 6e d5 b5 12 98 79 69 cd 1b 5d 10 65
00000020 eb e7 42 e2 ab 47 f4 86 b3 ae 65 3e
```
The Public-Key packet consists in large part of the actual cryptographic key data. Let's look at the packet field by field:
-`CTB: 0xc6`[^CTB]: The [packet type ID](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-packet-headers) for this packet. The binary representation of the value `0xc6` is `11000110`. Bits 7 and 6 show that the packet is in *OpenPGP packet format* (as opposed to in *Legacy packet format*). The remaining 6 bits encode the type ID's value: "6". This is the value for a Public-Key packet, as shown in the list of [packet type IDs](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-packet-tags).
-`length: 0x2a`: The remaining length of this packet.
The packet type id defines the semantics of the remaining data in the packet. We're looking at a Public-Key packet, which is a kind of [Key Material Packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-key-material-packets).
-`version: 0x06`: The key material is in version 6 format
This means that the next part of the packet follows the structure of [Version 6 Public Keys](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-version-6-public-keys)
-`creation_time: 0x6516eaa6`: "The time that the key was created" (also see [Time Fields](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-time-fields))
-`pk_algo: 0x1b`: "The public-key algorithm ID of this key" (decimal value 27, see the list of [Public-Key Algorithms](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-public-key-algorithms))
-`public_len: 0x00000020`: "Octet count for the following public key material" (in this case, the length of the following `ed25519_public` field)
-`ed25519_public`: [Algorithm-specific representation](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-algorithm-specific-part-for-ed2) of the public key material (the format is based on the value of `pk_algo`), in this case 32 bytes of Ed25519 public key
[^CTB]: Sequoia uses the term CTB (Cipher Type Byte) to refer to the RFC's [packet type ID](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-packet-headers). In previous versions, the RFC called this field "Packet Tag".
```{tip}
The overall structure of OpenPGP packets is described in the [Packet Syntax](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-packet-syntax) chapter of the RFC.
```
Note that the *Public-Key packet* contains only the public part of the key.
(zooming_in_dks)=
### Direct Key Signature
The next packet is a [*Direct Key Signature*](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#sigtype-direct-key), which is bound to the primary key (the file `alice.pub-1--Signature` contains this packet).
This packet "binds the information in the signature subpackets to the key". Each entry under "Signature Packet -> Hashed area" is one signature subpacket, for example, including information about algorithm preferences (*symmetric algorithm preference* and *hash algorithm preferences*).
```text
Signature Packet, new CTB, 2 header bytes + 182 bytes
Version: 6
Type: DirectKey
Pk algo: Ed25519
Hash algo: SHA512
Hashed area:
Signature creation time: 2023-09-29 15:17:58 UTC (critical)
-`CTB: 0xc2`: The Packet type ID for this packet. Bits 7 and 6 show that the packet is in “OpenPGP packet format” (as opposed to in “Legacy packet format”). The remaining 6 bits encode the type ID’s value: “2.” This is the value for a Signature packet.
-`length: 0xb6`: The remaining length of this packet.
The packet type ID defines the semantics of the remaining data in the packet. We're looking at a [Signature packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#signature-packet), so the following data is interpreted accordingly.
-`version: 0x06`: This is a version 6 signature (some of the following packet format is specific to this signature version).
-`type: 0x1f`: The [Signature Type](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-signature-types)
-`pk_algo: 0x1b`: Public-key algorithm ID (decimal 27, corresponds to [Ed25519](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-public-key-algorithms))
-`hash_algo: 0x0a`: Hash algorithm ID (decimal 10, corresponds to [SHA2-512](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-hash-algorithms))
-`hashed_area_len: 0x0000003d`: Length of the following hashed subpacket data
The next part of this packet contains hashed subpacket data. A subpacket data set in an OpenPGP Signature contains a list of zero or more Signature subpackets.
There are two sets of subpacket data in a Signature: hashed, and unhashed. The difference is that the hashed subpackets are protected by the digital signature of this packet, while the unhashed subpackets are not.
The following subpacket data consists of sets of "subpacket length, subpacket type ID, data." We'll show the information for each subpacket as one line, starting with the [subpacket type description](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-signature-subpacket-specifi) (based on the subpacket type ID). Note that bit 7 of the subpacket type ID signals if that subpacket is ["critical"](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#section-5.2.3.7-10).
```{note}
Critical here means: the receiver must be able to interpret the subpacket and is expected to fail, otherwise. Non-critical subpackets may be ignored by the receiver.
```
- [Signature creation time](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#signature-creation-subpacket) (subpacket type 2, **critical**): `0x6516eaa6` (also see [Time Fields](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-time-fields))
- [Key expiration time](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#key-expiration-subpacket) (subpacket type 9, **critical**): `0x05a48fbd` (defined as number of seconds after the key creation time)
- [Preferred symmetric ciphers for v1 SEIPD](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#preferred-v1-seipd) (type 11): `0x09 0x07`. (These values [correspond to](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#symmetric-algos): *AES with 256-bit key* and *AES with 128-bit key*)
- [Preferred hash algorithms](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#preferred-hashes-subpacket) (subpacket type 21): `0x0a 0x08`. (These values [correspond to](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-hash-algorithms): *SHA2-512* and *SHA2-256*)
- [Key flags](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#key-flags) (subpacket type 27, **critical**): `0x01`. (This value [corresponds](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-key-flags) to the *certifications* key flag)
- [Features](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#features-subpacket) (subpacket type 30): `0x01`. (This value [corresponds](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-features) to: *Symmetrically Encrypted Integrity Protected Data packet version 1*)
- [Issuer fingerprint](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#issuer-fingerprint-subpacket) (subpacket type 33): `aaa18cbb254685c58358320563fd37b67f3300f9fb0ec457378cd29f102698b3` (this is the fingerprint of the component key that issued the signature in this packet. Not that here, the value is the primary key fingerprint of the certificate we're looking at.)
The next part of this packet contains "unhashed subpacket data":
-`unhashed_area_len: 0x0000000a`: Length of the following unhashed subpacket data (value: 10 bytes).
As above, the following subpacket data consists of sets of "subpacket length, subpacket type id, data." In this case, only subpacket follows:
- [Issuer Key ID](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#issuer-keyid-subpacket) (subpacket type 16): `aaa18cbb254685c5` (this is the shortened version 6 *Key ID* of the fingerprint of this certificate's primary key)
This concludes the unhashed subpacket data.
-`digest_prefix: 0x6747`: "The left 16 bits of the signed hash value"
-`salt_len, salt`: A random [salt value](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-advantages-of-salted-signat) (the size must be [matching for the hash algorithm](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#hash-algorithms-registry))
-`ed25519_sig`: [Algorithm-specific](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-algorithm-specific-fields-for-ed2) representation of the signature (in this case: 64 bytes of Ed25519 signature)
The signature is calculated over a hash. The hash, in this case, is calculated over the following data (for details, see [Computing Signatures](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-11.html#name-computing-signatures) in the RFC):
- The signature's salt
- A serialized form of the primary key's public data
- A serialized form of this direct key signature packet (up to, but excluding the unhashed area)
(zoom_enc_subkey)=
## Encryption subkey
Now we'll look at a subkey in Alice's certificate. An OpenPGP subkey, when it is linked to an OpenPGP certificate (via its primary key), consists of two elements:
- a key packet that contains the component key itself, and
- a signature packet that links this component key to the primary key (and thus implicitly to the full OpenPGP certificate).
In this section, we'll use the files that contain individual packets of Alice's certificate, which we split apart above. In this split representation of Alice's certificate, the encryption subkey happens to be stored in `alice.pub-4--PublicSubkey`, and the associated binding self-signature for the subkey in `alice.pub-5--Signature`.
````{note}
It's common to look at a packet dump for a full OpenPGP certificate, like this:
```text
$ sq packet dump --hex alice.pub
```
That command shows the details for the full series of packets in an OpenPGP certificate (recall the list of [packets of Alice's certificate](split_alice)). Finding a particular packet in that list can take a bit of focus and practice though.
In the following sections we're making it a bit easier for ourselves, and directly look at individual packets, from the files we created with `sq packet split`, above.
````
### Public-Subkey packet
First, we'll look at the *Public-Subkey packet* that contains the component key data of this subkey:
```text
$ sq packet dump --hex alice.pub-4--PublicSubkey
Public-Subkey Packet, new CTB, 2 header bytes + 42 bytes
00000010 cc 42 af 99 34 c5 c2 5c ca fa b7 4a c8 43 fc 86
00000020 35 2a 46 01 f3 cc 00 f5 4a 09 3e 3f
```
Notice that the structure of this *Public-Subkey packet* is the same as the *Public-Key Packet* of the primary key, [above](public_key). Only the content of the two packets differs in some points:
- The packet type ID (`CTB`) in this packet shows type 14 ([*Public-Subkey packet*](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-public-subkey-packet-tag-14)).
- The `pk_algo` value is set to `0x19` (decimal 25), which [corresponds to](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-public-key-algorithms) X25519. Note that even though both the primary key and this subkey use a cryptographic mechanism based on Curve25519, this encryption key uses Curve 25519 in a different way (X25519 is a Diffie–Hellman function built out of Curve25519).
- Accordingly, the public part of the cryptographic key pair is labeled with the corresponding name: `x25519_public` (however, note that this difference only reflects the semantics of the field, which is implied by the value of `pk_algo`. The actual data consists of just 32 bytes of cryptographic key material, without any type information.)
### Subkey binding signature
The subkey packet above by itself is disconnected from the OpenPGP certificate that it is a part of. The link between the subkey and the full OpenPGP key is made with a cryptographic signature, which is issued by the OpenPGP key's primary key.
The type of signature that is used for this is called a *subkey binding signature*, because it "binds" (as in "connects") the subkey to the rest of the key.
```{admonition} VISUAL
:class: warning
Add detailed packet diagram analogous to 4.6.1
```
```{admonition} TODO
:class: warning
david points out: "The information on metadata in binding signatures may also make sense in other contexts (direct key signature)?"
Should this text go elsewhere?
- 4.2.3?
- ch 6?
```
In addition to its core purpose of making the connection, this signature also contains additional metadata about the subkey. One reason why this metadata is in a binding signature (and not in the subkey packet) is that it may change over time. The subkey packet itself may not change over time. So metadata about the subkey that can change is stored in self-signatures: if the key holder wants to change some metadata (for example, the key's expiration time), they can issue a newer version of the same kind of signature. Receiving OpenPGP software will then understand that the newer self-signature supersedes the older signature, and that the metadata in the newer signature reflects the most current intent of the key holder.
Note that this subkey binding signature packet is quite similar to the Direct Key Signature we discussed packet above. Both signatures perform the same function in terms of adding metadata to a component key. In particular, the hashed subpacket data contains many of the same pieces of metadata.
```text
$ sq packet dump --hex alice.pub-5--Signature
Signature Packet, new CTB, 2 header bytes + 171 bytes
Version: 6
Type: SubkeyBinding
Pk algo: Ed25519
Hash algo: SHA512
Hashed area:
Signature creation time: 2023-09-29 15:17:58 UTC (critical)
00000050 b5 ab 15 e3 7f e4 4d b9 a7 ef 71 48 14 3b ab 26
00000060 5f 34 7f 6d 48 2e 9f 78 48 58 6d 9a fb
0000006d 6d b2 db ed25519_sig
00000070 2f 97 8e c8 12 fc 57 7f 85 aa d1 59 bc 80 40 0b
00000080 be 2e f0 e1 23 2d bf 4b 71 7e d0 e4 c0 36 e4 d2
00000090 cf b2 9f b4 a8 4f 3e 2a 21 89 74 c2 33 55 af ac
000000a0 41 36 1b 2b 60 09 f2 d9 19 f4 41 12 0b
```
We'll go over this packet dump in less detail, since its structure mirrors the *Direct Key Signature* (described above) very closely.
The first difference is in the `type` field, showing that this signature is of type `0x18` ([Subkey Binding Signature](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-subkey-binding-signature-si)).
The `pk_algo` of this signature is informed by the algorithm of the primary key (`0x1b`, corresponding to Ed25519). The signature in this packet is issued by the primary key, so by definition it uses the signing algorithm of the primary key (that is: the algorithm used to produce the cryptographic signature in this packet is entire independent of the `pk_algo` of the key material of this subkey itself, which uses the X25519 mechanism).
As shown in the text at the top of this packet dump, the hashed subpacket data contains four pieces of information:
The remainder of the packet has the same content as the *Direct Key Signature* above:
- A 16 bit digest prefix
- A salt value
- The cryptographic signature itself
The signature is calculated over a hash. The hash, in this case, is calculated over the following data (for details, see [Computing Signatures](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-11.html#name-computing-signatures) in the RFC):
- The signature's salt
- A serialized form of the primary key's public data
- A serialized form of the subkey's public data
- A serialized form of this subkey binding signature packet (up to, but excluding the unhashed area)
## Signing subkey
```{admonition} TODO
:class: warning
write
```
```text
$ sq packet dump --hex alice.pub-6--PublicSubkey
Public-Subkey Packet, new CTB, 2 header bytes + 42 bytes
000000f0 93 af ba 08 89 f0 e0 91 0f ab 22 26 aa b3 56 57
00000100 30 ea 95 29 06 60 6f 00
00000108 be 44 a1 95 38 a9 6b 3a ed25519_sig
00000110 3e 51 f0 55 09 b1 e2 91 a9 17 86 fa f5 1e 3f d0
00000120 28 46 3c ce 6e 88 14 37 32 ec 3d fa c6 01 ca e5
00000130 a9 4b b7 63 94 c3 0d 92 ab dc fa 23 50 71 60 31
00000140 a6 73 c8 33 5a 9c d9 0a
```
(zooming_in_user_id)=
## Adding an identity component
Now we'll look at an identity that is associated with Alice's certificate.
User IDs are a mechanism for connecting [identities](identity_components) with an OpenPGP certificate. Traditionally, User IDs contain a string that combines a name and an email address.
Like [above](zoom_enc_subkey), to look at the internal packet structure of this identity and its connection the OpenPGP certificate, we'll inspect the two individual packets that constitute the identity component, the [User ID packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-user-id-packet-tag-13), in the file `alice.pub-2--UserID`, and the certifying self-signature a [Positive certification of a User ID and Public-Key packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-positive-certification-of-a) in `alice.pub-3--Signature` (these packets are an excerpt of Alice's full OpenPGP private key).
### User ID packet
First, let's look at the User ID packet, which encodes an identity that Alice has connected to her OpenPGP certificate:
```text
$ sq packet dump --hex alice.pub-2--UserID
User ID Packet, new CTB, 2 header bytes + 19 bytes
-`CTB: 0xcd`: The Packet type ID for this packet. Bits 7 and 6 show that the packet is in “OpenPGP packet format” (as opposed to in “Legacy packet format”). The remaining 6 bits encode the type ID’s value: “13.” This is the value for a [User ID packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-user-id-packet-tag-13).
-`length: 0x13`: The remaining length of this packet (here: 19 bytes).
-`value`: 19 bytes of data that contain UTF-8 encoded text. The value corresponds to the string `<alice@example.org>`. With this identity component, Alice states that she uses (and has control of) this email address. Note that the email address is enclosed in `<` and `>` characters, following [RFC 2822](https://www.rfc-editor.org/rfc/rfc2822) conventions.
So, a User ID packet is really just a string, marked as a User ID by the packet type id.
### Linking the User ID with a certification self-signature
As above, when [linking a subkey](zoom_enc_subkey) to the OpenPGP certificate, a self-signature is used to connect this new component to the certificate.
To bind identities to a certificate with a self-signature, one of the signature types `0x10` - `0x13` can be used. Here, the signature type `0x13` (*positive certification*) is used.
```text
$ sq packet dump --hex alice.pub-3--Signature
Signature Packet, new CTB, 2 header bytes + 185 bytes
Version: 6
Type: PositiveCertification
Pk algo: Ed25519
Hash algo: SHA512
Hashed area:
Signature creation time: 2023-09-29 15:17:58 UTC (critical)
00000090 66 07 8b b2 ba 3d b7 89 e4 76 04 6e 35 24 2b 27
000000a0 29 83 be 91 9c 78 6a cc b4 d5 69 47 76 2c 29 d6
000000b0 54 bf 43 19 04 ff 53 98 c0 d5 0b
```
We'll go over this packet dump in less detail, since its structure closely mirrors the [Direct Key Signature](zooming_in_dks) discussed above.
We're again looking at a Signature packet. Its `type` is `0x13` ([corresponding](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-signature-types) to a *positive certification* signature).
The public key algorithm and hash function used for this signature are Ed25519 and SHA512.
As shown in the text at the top of this packet dump, the hashed subpacket data contains the following metadata:
This is a combination of metadata about the User ID itself (including defining this User ID as the *primary User ID* of this certificate), algorithm preferences that are associated with this identity, and settings that apply to the primary key.
````{note}
For historical reasons, the self-signature that binds the primary User ID to the certificate also contains subpackets that apply not to the User ID, but to the primary key itself.
Setting key expiration time and key flags on the primary User ID self-signature is one mechanism to configure the primary key.
The interaction between metadata on direct key signatures and User ID binding self-signatures [is subtle](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-11.html#name-notes-on-self-signatures), and there are changes between version 6 and version 4.
```{admonition} TODO
:class: warning
- link to a section that goes into more depth about "#name-notes-on-self-signatures"?
```
````
Followed, again, by the (informational) unhashed subpacket area.
And finally, a salt value for the signature and the signature itself.
The signature is calculated over a hash. The hash, in this case, is calculated over the following data (for details, see [Computing Signatures](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-11.html#name-computing-signatures) in the RFC):
- The signature's salt
- A serialized form of the primary key's public data
- A serialized form of the User ID
- A serialized form of this self-signature packet (up to, but excluding the unhashed area)