[Symmetric-key cryptography](https://en.wikipedia.org/wiki/Symmetric-key_algorithm) uses the same cryptographic key for both encryption and decryption. Symmetric-key cryptographic systems support *encryption/decryption* operations.
Participants in symmetric-key operations need to exchange the shared secret over a secure channel.
```{admonition} TODO
:class: warning
- visualization? (maybe a black key icon, following wikipedia's example?)
Symmetric-key cryptography is much faster than public-key cryptography. Also, unlike traditional public-key mechanisms, symmetric-key cryptography is quantum-resistant.
So there is a trade-off: Symmetric-key has major benefits, but exchanging the shared secret is a problem that needs to be solved separately. [Hybrid cryptosystems](hybrid_cryptosystems) are one common approach.
[Public-key cryptography](https://en.wikipedia.org/wiki/Public-key_cryptography) systems use asymmetric pairs of related keys. Public-key cryptographic systems support *encryption/decryption* and *digital signature* operations.
Public-key cryptography doesn't require participants to have pre-arranged a shared secret.
An asymmetric cryptographic key pair consists of a public and a private part. In this document, we'll show the public part of key pair in green, and the private part in red.
Note that, for historical reasons, OpenPGP often uses the terms "public/secret" instead of "public/private." The OpenPGP RFC and other documentation often use the non-standard term "secret key" instead of the more common "private key."
[Hybrid cryptosystems](https://en.wikipedia.org/wiki/Hybrid_cryptosystem) combine public-key cryptosystems with symmetric-key cryptosystems in a way that makes use of their respective advantages.