ch4: write "user id" zooming in section

This commit is contained in:
Heiko Schaefer 2023-10-11 17:59:06 +02:00
parent 3688054f4f
commit 7617d7eea6
No known key found for this signature in database
GPG key ID: 4A849A1904CCBD7D

View file

@ -482,6 +482,7 @@ The overall structure of OpenPGP packets is described in the [Packet Syntax](htt
Note that the *Secret-Key packet* contains both the private and the public part of the key.
(zooming_in_dks)=
#### Direct Key Signature
The next packet is a [*Direct Key Signature*](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#sigtype-direct-key), which is bound to the primary key (the file `alice.priv-1--Signature` contains this packet).
@ -580,7 +581,7 @@ Critical here means: the receiver must be able to interpret the subpacket and is
```
- [Signature creation time](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#signature-creation-subpacket) (subpacket type 2, **critical**): `0x6516eaa6` (also see [Time Fields](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-time-fields))
- [Key expiration time](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#key-expiration-subpacket) (subpacket type 9, **critical**): `0x05a48fbd` (also see [Time Fields](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-time-fields))
- [Key expiration time](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#key-expiration-subpacket) (subpacket type 9, **critical**): `0x05a48fbd` (defined as number of seconds after the key creation time)
- [Preferred symmetric ciphers for v1 SEIPD](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#preferred-v1-seipd) (type 11): `0x09 0x07`. (These values [correspond to](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#symmetric-algos): *AES with 256-bit key* and *AES with 128-bit key*)
- [Preferred hash algorithms](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#preferred-hashes-subpacket) (subpacket type 21): `0x0a 0x08`. (These values [correspond to](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-hash-algorithms): *SHA2-512* and *SHA2-256*)
- [Key flags](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#key-flags) (subpacket type 27, **critical**): `0x01`. (This value [corresponds](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-key-flags) to the *certifications* key flag)
@ -665,6 +666,7 @@ A minimal OpenPGP public certificate, visualized
In the following examples, we will only look at OpenPGP keys that include the private key material. The corresponding "certificate" variants, which only contain the public key material, are easy to imagine: like here, their packet type is changed from a Secret-Key to a Public-Key variant, and they leave out the private key material.
(zoom_enc_subkey)=
### Encryption subkey
Now we'll look at a subkey in Alice's key. An OpenPGP subkey, when it is linked to an OpenPGP certificate (via its primary key), effectively consists of two elements:
@ -812,7 +814,7 @@ The first difference is in the `type` field, showing that this signature is of t
The `pk_algo` of this signature is informed by the algorithm of the primary key (`0x1b`, corresponding to Ed25519). The signature in this packet is issued by the primary key, so by definition it uses the signing algorithm of the primary key (that is: the algorithm used to produce the cryptographic signature in this packet is entire independent of the `pk_algo` of the key material of this subkey itself, which uses the X25519 mechanism).
As shown in the header of this packet dump, the hashed subpacket data contains four pieces of information:
As shown in the text at the top of this packet dump, the hashed subpacket data contains four pieces of information:
- Signature creation time: `2023-09-29 15:17:58 UTC` (**critical**)
- Key expiration time: `P1095DT62781S` (**critical**)
@ -952,127 +954,20 @@ Signature Packet, new CTB, 3 header bytes + 325 bytes
```
(zooming_in_user_id)=
### User ID
### Adding an identity component
User IDs are a mechanism for attaching *identities* to an OpenPGP certificate. Traditionally, User IDs contain a string that combines a name and an email address.
Now we'll look at an identity that is associated with Alice's certificate.
To look into these, we'll make a certificate that has one [User ID](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#uid). User IDs are *"intended to represent the name and email address of the key holder"*. A certificate can have multiple User IDs associated with it.
User IDs are a mechanism for connecting [identities](identity_components) with an OpenPGP certificate. Traditionally, User IDs contain a string that combines a name and an email address.
Let's look into the details of this key:
Like [above](zoom_enc_subkey), to look at the internal packet structure of this identity and its connection the OpenPGP certificate, we'll inspect the two individual packets that constitute the identity component, the [User ID packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-user-id-packet-tag-13), in the file `alice.priv-2--UserID`, and the certifying self-signature a [Positive certification of a User ID and Public-Key packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-positive-certification-of-a) in `alice.priv-3--Signature` (these packets are an excerpt of Alice's full OpenPGP private key).
#### User ID packet
First, let's look at the User ID packet, which encodes an identity that Alice has connected to her OpenPGP certificate:
```text
-----BEGIN PGP PRIVATE KEY BLOCK-----
Comment: AAA1 8CBB 2546 85C5 8358 3205 63FD 37B6 7F33 00F9 FB0E C457 378C D29F 1026 98B3
Comment: <alice@example.org>
xUsGZRbqphsAAAAgUyTpQ6+rFfdu1bUSmHlpzRtdEGXr50Liq0f0hrOuZT4A7+GZ
tV8R+6qT6CadO7ItciB9/71C3UvpozaBO6XMz/vCtgYfGwoAAAA9BYJlFuqmBYkF
pI+9AwsJBwMVCggCmwECHgEiIQaqoYy7JUaFxYNYMgVj/Te2fzMA+fsOxFc3jNKf
ECaYswAAAAoJEKqhjLslRoXFZ0cgouNjgeNr0E9W18g4gAIl6FM5SWuQxg12j0S0
7ExCOI5NPRDCrSnAV85mAXOzeIGeiVLPQ40oEal3CX/L+BXIoY2sIEQrLd4TAEEy
0BA8aQZTPEmMdiOCM1QB+V+BQZAOzRM8YWxpY2VAZXhhbXBsZS5vcmc+wrkGExsK
AAAAQAWCZRbqpgWJBaSPvQMLCQcDFQoIApkBApsBAh4BIiEGqqGMuyVGhcWDWDIF
Y/03tn8zAPn7DsRXN4zSnxAmmLMAAAAKCRCqoYy7JUaFxdu4IIotb9pnNbxdBHe0
nWeobsXWiFNf4u/5Zgi/wuDbwFYN69QspRkBD7om0IKiz1zreqly2fOyZgeLsro9
t4nkdgRuNSQrJymDvpGceGrMtNVpR3YsKdZUv0MZBP9TmMDVCw==
=bgQM
-----END PGP PRIVATE KEY BLOCK-----
```
```text
$ sq packet dump --hex alice_userid.priv
Secret-Key Packet, new CTB, 2 header bytes + 75 bytes
Version: 6
Creation time: 2023-09-29 15:17:58 UTC
Pk algo: Ed25519
Pk size: 256 bits
Fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3
KeyID: AAA18CBB254685C5
Secret Key:
Unencrypted
00000000 c5 CTB
00000001 4b length
00000002 06 version
00000003 65 16 ea a6 creation_time
00000007 1b pk_algo
00000008 00 00 00 20 public_len
0000000c 53 24 e9 43 ed25519_public
00000010 af ab 15 f7 6e d5 b5 12 98 79 69 cd 1b 5d 10 65
00000020 eb e7 42 e2 ab 47 f4 86 b3 ae 65 3e
0000002c 00 s2k_usage
0000002d ef e1 99 ed25519_secret
00000030 b5 5f 11 fb aa 93 e8 26 9d 3b b2 2d 72 20 7d ff
00000040 bd 42 dd 4b e9 a3 36 81 3b a5 cc cf fb
Signature Packet, new CTB, 2 header bytes + 182 bytes
Version: 6
Type: DirectKey
Pk algo: Ed25519
Hash algo: SHA512
Hashed area:
Signature creation time: 2023-09-29 15:17:58 UTC (critical)
Key expiration time: P1095DT62781S (critical)
Symmetric algo preferences: AES256, AES128
Hash preferences: SHA512, SHA256
Key flags: C (critical)
Features: MDC
Issuer Fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3
Unhashed area:
Issuer: AAA18CBB254685C5
Digest prefix: 6747
Level: 0 (signature over data)
00000000 c2 CTB
00000001 b6 length
00000002 06 version
00000003 1f type
00000004 1b pk_algo
00000005 0a hash_algo
00000006 00 00 00 3d hashed_area_len
0000000a 05 subpacket length
0000000b 82 subpacket tag
0000000c 65 16 ea a6 sig creation time
00000010 05 subpacket length
00000011 89 subpacket tag
00000012 05 a4 8f bd key expiry time
00000016 03 subpacket length
00000017 0b subpacket tag
00000018 09 07 pref sym algos
0000001a 03 subpacket length
0000001b 15 subpacket tag
0000001c 0a 08 pref hash algos
0000001e 02 subpacket length
0000001f 9b subpacket tag
00000020 01 key flags
00000021 02 subpacket length
00000022 1e subpacket tag
00000023 01 features
00000024 22 subpacket length
00000025 21 subpacket tag
00000026 06 version
00000027 aa a1 8c bb 25 46 85 c5 83 issuer fp
00000030 58 32 05 63 fd 37 b6 7f 33 00 f9 fb 0e c4 57 37
00000040 8c d2 9f 10 26 98 b3
00000047 00 00 00 0a unhashed_area_len
0000004b 09 subpacket length
0000004c 10 subpacket tag
0000004d aa a1 8c issuer
00000050 bb 25 46 85 c5
00000055 67 digest_prefix1
00000056 47 digest_prefix2
00000057 20 salt_len
00000058 a2 e3 63 81 e3 6b d0 4f salt
00000060 56 d7 c8 38 80 02 25 e8 53 39 49 6b 90 c6 0d 76
00000070 8f 44 b4 ec 4c 42 38 8e
00000078 4d 3d 10 c2 ad 29 c0 57 ed25519_sig
00000080 ce 66 01 73 b3 78 81 9e 89 52 cf 43 8d 28 11 a9
00000090 77 09 7f cb f8 15 c8 a1 8d ac 20 44 2b 2d de 13
000000a0 00 41 32 d0 10 3c 69 06 53 3c 49 8c 76 23 82 33
000000b0 54 01 f9 5f 81 41 90 0e
$ sq packet dump --hex alice.priv-2--UserID
User ID Packet, new CTB, 2 header bytes + 19 bytes
Value: <alice@example.org>
@ -1080,7 +975,22 @@ User ID Packet, new CTB, 2 header bytes + 19 bytes
00000001 13 length
00000002 3c 61 6c 69 63 65 40 65 78 61 6d 70 6c 65 value
00000010 2e 6f 72 67 3e
```
- `CTB: 0xcd`: The Packet Tag for this packet. Bits 7 and 6 show that the packet is in “OpenPGP packet format” (as opposed to in “Legacy packet format”). The remaining 6 bits encode the Tags value: “13.” This is the value for a [User ID packet](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-user-id-packet-tag-13).
- `length: 0x13`: The remaining length of this packet (here: 19 bytes).
- `value`: 19 bytes of data that contain UTF-8 encoded text. The value corresponds to the string `<alice@example.org>`. With this identity component, Alice states that she uses (and has control of) this email address. Note that the email address is enclosed in `<` and `>` characters, following [RFC 2822](https://www.rfc-editor.org/rfc/rfc2822) conventions.
So, a User ID packet is really just a string, marked as a User ID by the packet type id.
#### Linking the User ID with a certification self-signature
As above, when [linking a subkey](zoom_enc_subkey) to the OpenPGP certificate, a self-signature is used to connect this new component to the certificate.
To bind identities to a certificate with a self-signature, one of the signature types `0x10` - `0x13` can be used. Here, the signature type `0x13` (*positive certification*) is used.
```text
$ sq packet dump --hex alice.priv-3--Signature
Signature Packet, new CTB, 2 header bytes + 185 bytes
Version: 6
Type: PositiveCertification
@ -1151,13 +1061,52 @@ Signature Packet, new CTB, 2 header bytes + 185 bytes
000000b0 54 bf 43 19 04 ff 53 98 c0 d5 0b
```
Instead of two packets, as before, we see four packets in this certificate:
* First, a "Secret-Key Packet,"
* then a "Signature Packet" (these two packets are the same as above).
* Third, a [*"User ID Packet"*](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#uid), which contains the name and email address we used
* Finally, a [*"Positive Certification Signature"*](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#sigtype-positive-cert) (type 0x13), *"Positive certification of a User ID and Public-Key packet"*. This is a cryptographic artifact that "binds the User ID packet and the Key packet together", i.e. it certifies that the owner of the key wants this User ID associated with their key. (Only the person who controls the private part of this key can create this signature packet. The signature serves as proof that the owner of the key has added this User ID to the certificate)
We'll go over this packet dump in less detail, since its structure closely mirrors the [Direct Key Signature](zooming_in_dks) discussed above.
We're again looking at a Signature packet. Its `type` is `0x13` ([corresponding](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-10.html#name-signature-types) to a *positive certification* signature).
The public key algorithm and hash function used for this signature are Ed25519 and SHA512.
As shown in the text at the top of this packet dump, the hashed subpacket data contains the following metadata:
- Signature creation time: `2023-09-29 15:17:58 UTC` (**critical**)
- Key expiration time: `P1095DT62781S` (**critical**)
- Symmetric algo preferences: `AES256, AES128`
- Hash preferences: `SHA512, SHA256`
- Primary User ID: `true` (**critical**)
- Key flags: `C` (**critical**)
- Features: `MDC`
- Issuer Fingerprint: `AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3`
This is a combination of metadata about the User ID itself (including defining this User ID as the *primary User ID* of this certificate), algorithm preferences that are associated with this identity, and settings that apply to the primary key.
````{note}
For historical reasons, the self-signature that binds the primary User ID to the certificate also contains subpackets that apply not to the User ID, but to the primary key itself.
Setting key expiration time and key flags on the primary User ID self-signature is one mechanism to configure the primary key.
The interaction between metadata on direct key signatures and User ID binding self-signatures [is subtle](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-11.html#name-notes-on-self-signatures), and there are changes between version 6 and version 4.
```{admonition} TODO
:class: warning
- link to a section that goes into more depth about "#name-notes-on-self-signatures"?
```
````
Followed, again, by the (informational) unhashed subpacket area.
And finally, a salt value for the signature and the signature itself.
The signature is calculated over a hash. The hash, in this case, is calculated over the following data (for details, see [Computing Signatures](https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-11.html#name-computing-signatures) in the RFC):
- The signature's salt
- A serialized form of the primary key's public data
- A serialized form of the User ID
- A serialized form of this self-signature packet (up to, but excluding the unhashed area)
### Certifications (Third Party Signatures)