Simple to use OpenPGP API based on Bouncycastle https://pgpainless.org
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paul Schaub 4bd4d24066
Update .gitignore
2 months ago
config WIP: Move code to submodule and improve build script 3 months ago
gradle/wrapper Simplify Key Generator API and allow EC keys to be generated 5 months ago
pgpainless-core Add MultiMapTest 2 months ago
.gitignore Update .gitignore 2 months ago
.travis.yml Add jacocoRootReport task 3 months ago
CODE_OF_CONDUCT.md Add code of conduct 4 months ago
LICENSE Add license 5 months ago
README.md add codeblock syntax 3 months ago
build.gradle Add jacocoRootReport task 3 months ago
gradlew Initial commit 5 months ago
gradlew.bat Initial commit 5 months ago
settings.gradle Rename module painless-core -> pgpainless-core 3 months ago
version.gradle PGPainless 0.0.1-alpha5-SNAPSHOT 2 months ago

README.md

PGPainless - Use OpenPGP Painlessly!

Travis (.org) Git Tag Coverage Status

About

PGPainless aims to make using OpenPGP in Java projects as simple as possible. It does so by introducing an intuitive Builder structure, which allows easy setup of encryption / decrytion operations, as well as straight forward key generation.

PGPainless is based around the Bouncycastle java library and can be used on Android down to API level 9.

NOTE: PGPainless is in a very early state of development and should under no circumstances be used for serious production usage yet.

Include PGPainless in your Project

PGPainless is available on maven central. In order to include it in your project, just add the maven central repository and add PGPainless as a dependency.

repositories {
	mavenCentral()
}

dependencies {
	compile 'org.pgpainless:pgpainless-core:0.0.1-alpha1'
}

How to use PGPainless

The entry point to the API is the PGPainless class. Here you can find methods for a quick start :)

Generate Keys

The first thing you probably want to do is generate you some nice tasty Key Pairs. The most straight forward way to do so is by calling

        PGPSecretKeyRing keyRing = PGPainless.generateKeyRing()
                .simpleRsaKeyRing("Juliet <juliet@montague.lit>", RsaLength._4096);

but feel free to explore the API further. PGPainless allows you to create Key Pairs consisting of a master key plus several sub keys, even with different algorithms at the same time! Take for example a look at this delicious key:

        PGPSecretKeyRing keyRing = PGPainless.generateKeyRing()
                .withSubKey(
                        KeySpec.getBuilder(ECDSA.fromCurve(EllipticCurve._P256))
                        .withKeyFlags(KeyFlag.SIGN_DATA)
                        .withDetailedConfiguration()
                        .withDefaultSymmetricAlgorithms()
                        .withDefaultHashAlgorithms()
                        .withPreferredCompressionAlgorithms(CompressionAlgorithm.ZLIB)
                        .withFeature(Feature.MODIFICATION_DETECTION)
                        .done())
                .withSubKey(
                        KeySpec.getBuilder(ECDH.fromCurve(EllipticCurve._P256))
                        .withKeyFlags(KeyFlag.ENCRYPT_COMMS, KeyFlag.ENCRYPT_STORAGE)
                        .withDefaultAlgorithms())
                .withMasterKey(
                        KeySpec.getBuilder(RSA_GENERAL.withLength(RsaLength._8192))
                                .withKeyFlags(KeyFlag.SIGN_DATA, KeyFlag.CERTIFY_OTHER)
                                .withDefaultAlgorithms())
                .withPrimaryUserId("Juliet <juliet@montague.lit>")
                .withPassphrase("romeo_oh_Romeo<3")
                .build();

Encrypt / Sign Data

Encrypting and signing data is pretty straight forward as well.

        EncryptionStream encryptor = PGPainless.createEncryptor()
                .onOutputStream(targetOuputStream)
                .toRecipients(publicKeyRings)
                .usingSecureAlgorithms()
                .signWith(secretKeyDecryptor, signingKeyRing)
                .noArmor();

The resulting EncryptionStream can then be used to encrypt data like follows:

        Streams.pipeAll(sourceInputStream, encryptor);
        sourceInputStream.close();
        encryptor.close();

The encrypted data will be written to the provided targetOutputStream.

Additionally you can get information about the encrypted data by calling

        PainlessResult result = encryptor.getResult();

That object will contain information like to which keys the message is encrypted, which keys were used for signing and so on.

Decrypt / Verify Encrypted Data

To process incoming encrypted / signed data, just do the following:

        DecryptionStream decryptor = PGPainless.createDecryptor()
                .onInputStream(sourceInputStream) // insert encrypted data here
                .decryptWith(secretKeyDecryptor, secretKey)
                .verifyWith(trustedKeyIds, senderKeys)
                .ignoreMissingPublicKeys()
                .build();

Again, the resulting DecryptionStream can be used like a normal stream.

        Streams.pipeAll(decryptor, targetOutputStream);
        decryptor.close();

After the DecryptionStream was closed, you can get metadata about the processed data by retrieving the PainlessResult. Again, this object will contain information about how the message was encrypted, who signed it and so on.

        PainlessResult result = decryptor.getResult();

About

PGPainless is a by-product of my Summer of Code 2018 project. For that project I was in need of a simple to use OpenPGP library.

Originally I was going to use Bouncy-GPG for my project, but ultimately I decided to create my own OpenPGP library which better fits my needs.

However, PGPainless is heavily influenced by Bouncy-GPG and I would definitely recommend you to use it instead of PGPainless if you want a more mature, better tested code base.

To reach out to the development team, feel free to send a mail: info@pgpainless.org

Development

PGPainless is developed in - and accepts contributions from - the following places:

Please follow the code of conduct if you want to be part of the project.