Added 24 hour prediction

This commit is contained in:
reedts 2018-08-13 14:19:39 +02:00
parent fd623c32de
commit 0e228772dc
3 changed files with 49 additions and 4 deletions

View file

@ -68,6 +68,22 @@ def predict(nn, X_pred):
return predictions
def predict24h(nn, X_pred):
predictions = []
input = {'dc': X_pred['dc'].tolist()}
for i in range(24):
pred = nn.predict1h(pandas.DataFrame.from_dict(input))
predictions.extend(list([p['predictions'][0] for p in pred]))
# Remove first value and append predicted value
del input['dc'][0]
input['dc'].append(predictions[-1])
print(input)
return predictions
def eval_prediction(prediction, result):
print("The Explained Variance: %.2f" % explained_variance_score(
result, prediction))

View file

@ -6,7 +6,6 @@ import tensorflow as tf
def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=1):
# Create dictionary for features in hour 0 ... 335
features = {str(idx): [] for idx in range(336)}
#dc_values = X['dc'].tolist()
dc_values = X['dc']
# Iterate the empty dictionary always adding the idx-th element from the dc_values list
@ -15,7 +14,6 @@ def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=1):
labels = None
if y is not None:
#labels = y['dc'].values
labels = y['dc']
if labels is None:
@ -24,9 +22,11 @@ def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=1):
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
if shuffle:
dataset.shuffle(len(features['0']))
dataset.shuffle(len(features['0']*len(features)*4))
return dataset.batch(batch_size)
return dataset.repeat().batch(batch_size)
else:
return dataset.batch(batch_size)
class Net:

29
pywatts/test_predict24.py Normal file
View file

@ -0,0 +1,29 @@
import tensorflow as tf
import pywatts.db
from pywatts.main import *
import matplotlib.pyplot as pp
PREDICT_QUERY = "query-sample_24hour.json"
PREDICT_RESULT = PREDICT_QUERY.replace("query", "result")
QUERY_ID = 0
pred_query = input_query("../sample_data/" + PREDICT_QUERY, QUERY_ID)
pred_result = input_result("../sample_data/" + PREDICT_RESULT, QUERY_ID)
# Define feature columns and initialize Regressor
feature_col = [tf.feature_column.numeric_column(str(idx)) for idx in range(336)]
n = pywatts.neural.Net(feature_cols=feature_col)
prediction = predict24h(n, pred_query)
print(prediction)
print(pred_result)
pp.plot(pred_result, 'black')
pp.plot(prediction, 'red')
pp.show()
#pywatts.main.eval_prediction(prediction, pred_result)