Avoid having the same test sample twice
This commit is contained in:
parent
78efc4d041
commit
60137462ed
1 changed files with 8 additions and 2 deletions
|
@ -8,17 +8,22 @@ from random import randint
|
||||||
|
|
||||||
|
|
||||||
def train_split(data, size):
|
def train_split(data, size):
|
||||||
|
used_idxs = []
|
||||||
X_values = {'dc': [], 'temp': [], 'wind': []}
|
X_values = {'dc': [], 'temp': [], 'wind': []}
|
||||||
y_values = []
|
y_values = []
|
||||||
for i in range(size):
|
for i in range(size):
|
||||||
rnd_idx = randint(0, data.size / data.shape[1] - 337)
|
rnd_idx = randint(0, data.size / data.shape[1] - 337)
|
||||||
|
|
||||||
|
if rnd_idx in used_idxs:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
used_idxs.append(rnd_idx)
|
||||||
|
|
||||||
X_values['dc'].extend(data['dc'][rnd_idx:rnd_idx + 336].tolist())
|
X_values['dc'].extend(data['dc'][rnd_idx:rnd_idx + 336].tolist())
|
||||||
X_values['temp'].extend(data['temp'][rnd_idx:rnd_idx + 336].tolist())
|
X_values['temp'].extend(data['temp'][rnd_idx:rnd_idx + 336].tolist())
|
||||||
X_values['wind'].extend(data['wind'][rnd_idx:rnd_idx + 336].tolist())
|
X_values['wind'].extend(data['wind'][rnd_idx:rnd_idx + 336].tolist())
|
||||||
y_values.append(data['dc'][rnd_idx + 337].tolist())
|
y_values.append(data['dc'][rnd_idx + 337].tolist())
|
||||||
|
|
||||||
|
|
||||||
return pandas.DataFrame.from_dict(X_values), pandas.DataFrame.from_dict({'dc': y_values})
|
return pandas.DataFrame.from_dict(X_values), pandas.DataFrame.from_dict({'dc': y_values})
|
||||||
|
|
||||||
|
|
||||||
|
@ -31,6 +36,7 @@ def input_query(json_str, idx=0):
|
||||||
'wind': tmp_df['wind'][idx]}
|
'wind': tmp_df['wind'][idx]}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def input_result(json_str, idx=0):
|
def input_result(json_str, idx=0):
|
||||||
tmp_df = pandas.read_json(json_str)
|
tmp_df = pandas.read_json(json_str)
|
||||||
|
|
||||||
|
@ -40,7 +46,7 @@ def input_result(json_str, idx=0):
|
||||||
def train(nn, X_train, y_train, X_val, y_val, steps=100):
|
def train(nn, X_train, y_train, X_val, y_val, steps=100):
|
||||||
evaluation = []
|
evaluation = []
|
||||||
for i in range(steps):
|
for i in range(steps):
|
||||||
nn.train(X_train, y_train, steps=100)
|
nn.train(X_train, y_train, batch_size=int(len(X_train['dc'].tolist())/336), steps=100)
|
||||||
evaluation.append(nn.evaluate(X_val, y_val))
|
evaluation.append(nn.evaluate(X_val, y_val))
|
||||||
print("Training %s of %s" % ((i+1), steps))
|
print("Training %s of %s" % ((i+1), steps))
|
||||||
return evaluation
|
return evaluation
|
||||||
|
|
Loading…
Reference in a new issue