Avoid having the same test sample twice

This commit is contained in:
reedts 2018-06-23 15:40:23 +02:00
parent 78efc4d041
commit 60137462ed

View file

@ -8,17 +8,22 @@ from random import randint
def train_split(data, size): def train_split(data, size):
used_idxs = []
X_values = {'dc': [], 'temp': [], 'wind': []} X_values = {'dc': [], 'temp': [], 'wind': []}
y_values = [] y_values = []
for i in range(size): for i in range(size):
rnd_idx = randint(0, data.size / data.shape[1] - 337) rnd_idx = randint(0, data.size / data.shape[1] - 337)
if rnd_idx in used_idxs:
continue
else:
used_idxs.append(rnd_idx)
X_values['dc'].extend(data['dc'][rnd_idx:rnd_idx + 336].tolist()) X_values['dc'].extend(data['dc'][rnd_idx:rnd_idx + 336].tolist())
X_values['temp'].extend(data['temp'][rnd_idx:rnd_idx + 336].tolist()) X_values['temp'].extend(data['temp'][rnd_idx:rnd_idx + 336].tolist())
X_values['wind'].extend(data['wind'][rnd_idx:rnd_idx + 336].tolist()) X_values['wind'].extend(data['wind'][rnd_idx:rnd_idx + 336].tolist())
y_values.append(data['dc'][rnd_idx + 337].tolist()) y_values.append(data['dc'][rnd_idx + 337].tolist())
return pandas.DataFrame.from_dict(X_values), pandas.DataFrame.from_dict({'dc': y_values}) return pandas.DataFrame.from_dict(X_values), pandas.DataFrame.from_dict({'dc': y_values})
@ -31,6 +36,7 @@ def input_query(json_str, idx=0):
'wind': tmp_df['wind'][idx]} 'wind': tmp_df['wind'][idx]}
) )
def input_result(json_str, idx=0): def input_result(json_str, idx=0):
tmp_df = pandas.read_json(json_str) tmp_df = pandas.read_json(json_str)
@ -40,7 +46,7 @@ def input_result(json_str, idx=0):
def train(nn, X_train, y_train, X_val, y_val, steps=100): def train(nn, X_train, y_train, X_val, y_val, steps=100):
evaluation = [] evaluation = []
for i in range(steps): for i in range(steps):
nn.train(X_train, y_train, steps=100) nn.train(X_train, y_train, batch_size=int(len(X_train['dc'].tolist())/336), steps=100)
evaluation.append(nn.evaluate(X_val, y_val)) evaluation.append(nn.evaluate(X_val, y_val))
print("Training %s of %s" % ((i+1), steps)) print("Training %s of %s" % ((i+1), steps))
return evaluation return evaluation