Make Training Great Again!
This commit is contained in:
parent
e5ef0cd1ee
commit
c3c782bf02
3 changed files with 18 additions and 4 deletions
|
@ -1,3 +1,4 @@
|
|||
from pywatts import db
|
||||
from pywatts import fetchdata
|
||||
from pywatts import neural
|
||||
from pywatts import neural
|
||||
from pywatts import main
|
13
pywatts/main.py
Normal file
13
pywatts/main.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
import tensorflow as tf
|
||||
import pywatts.neural
|
||||
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
df = pywatts.db.rows_to_df(list(range(1, 50)))
|
||||
X = df[[col for col in df.columns if col != 'dc']]
|
||||
y = df['dc']
|
||||
|
||||
X_train, X_tmp, y_train, y_tmp = train_test_split(X, y, test_size=0.2, random_state=23)
|
||||
|
||||
feature_cols = [tf.feature_column.numeric_column(col) for col in X.columns]
|
||||
n = pywatts.neural.Net(feature_cols=feature_cols)
|
|
@ -1,5 +1,6 @@
|
|||
import tensorflow as tf
|
||||
|
||||
|
||||
def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=400):
|
||||
return tf.estimator.inputs.pandas_input_fn(x=X,
|
||||
y=y,
|
||||
|
@ -12,14 +13,13 @@ class Net:
|
|||
__regressor = None
|
||||
__feature_cols = [tf.feature_column.numeric_column(col) for col in ['dc', 'temp', 'wind']]
|
||||
|
||||
|
||||
def __init__(self, feature_cols=__feature_cols):
|
||||
self.__regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols,
|
||||
hidden_units=[50, 50],
|
||||
model_dir='tf_pywatts_model')
|
||||
|
||||
def train(self, training_data, steps):
|
||||
self.__regressor.train(input_fn=pywatts_input_fn(training_data, num_epochs=None, shuffle=True), steps=steps)
|
||||
def train(self, training_data, training_results, steps):
|
||||
self.__regressor.train(input_fn=pywatts_input_fn(training_data, y=training_results, num_epochs=None, shuffle=True), steps=steps)
|
||||
|
||||
def evaluate(self, eval_data):
|
||||
self.__regressor.evaluate(input_fn=self.pywatts_input_fn(eval_data, num_epochs=1, shuffle=False), steps=1)
|
||||
|
|
Loading…
Reference in a new issue