Fixed a few things
This commit is contained in:
parent
059dfea5d7
commit
cab536f7f2
2 changed files with 30 additions and 15 deletions
|
@ -4,15 +4,16 @@ import matplotlib.pyplot as pp
|
|||
import pywatts.neural
|
||||
from sklearn.metrics import explained_variance_score, mean_absolute_error, median_absolute_error
|
||||
import pandas
|
||||
from random import randint
|
||||
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
df = pywatts.db.rows_to_df(list(range(1, 50)))
|
||||
X = df[[col for col in df.columns if col != 'dc']]
|
||||
X = df
|
||||
y = df['dc']
|
||||
|
||||
X_train, X_tmp, y_train, y_tmp = train_test_split(X, y, test_size=0.2, random_state=23)
|
||||
X_train, X_tmp, y_train, y_tmp = train_test_split(X, y, test_size=0.2, random_state=34)
|
||||
|
||||
X_test, X_val, y_test, y_val = train_test_split(X_tmp, y_tmp, test_size=0.5, random_state=23)
|
||||
|
||||
|
@ -20,20 +21,34 @@ feature_cols = [tf.feature_column.numeric_column(col) for col in X.columns]
|
|||
n = pywatts.neural.Net(feature_cols=feature_cols)
|
||||
|
||||
|
||||
def input_data(json_str):
|
||||
def train_split(data, size):
|
||||
X_values = {'dc': [], 'temp': [], 'wind': []}
|
||||
y_values = []
|
||||
for i in range(size):
|
||||
rnd_idx = randint(0, data.size / data.shape[1] - 337)
|
||||
|
||||
X_values['dc'].extend(data['dc'][rnd_idx:rnd_idx + 336])
|
||||
X_values['temp'].extend(data['temp'][rnd_idx:rnd_idx + 336])
|
||||
X_values['wind'].extend(data['wind'][rnd_idx:rnd_idx + 336])
|
||||
y_values.append(data['dc'][rnd_idx + 337])
|
||||
|
||||
return pandas.DataFrame.from_dict(X_values), pandas.DataFrame.from_dict({'dc': y_values})
|
||||
|
||||
|
||||
def input_data(json_str, idx=0):
|
||||
tmp_df = pandas.read_json(json_str)
|
||||
|
||||
return pandas.DataFrame.from_dict(
|
||||
{'dc': [x for l in tmp_df['dc'] for x in l],
|
||||
'temp': [x for l in tmp_df['temp'] for x in l],
|
||||
'wind': [x for l in tmp_df['wind'] for x in l]}
|
||||
{'dc': tmp_df['dc'][idx],
|
||||
'temp': tmp_df['temp'][idx],
|
||||
'wind': tmp_df['wind'][idx]}
|
||||
)
|
||||
|
||||
|
||||
def train(steps=100):
|
||||
evaluation = []
|
||||
for i in range(steps):
|
||||
n.train(X_train, y_train, steps=400)
|
||||
n.train(X_train, y_train, steps=100)
|
||||
evaluation.append(n.evaluate(X_val, y_val))
|
||||
print("Training %s of %s" % ((i+1), steps))
|
||||
return evaluation
|
||||
|
@ -42,7 +57,7 @@ def train(steps=100):
|
|||
def plot_training(evaluation):
|
||||
loss = []
|
||||
for e in evaluation:
|
||||
loss.append(e['loss'])
|
||||
loss.append(e['average_loss'])
|
||||
pp.plot(loss)
|
||||
|
||||
|
||||
|
@ -52,11 +67,11 @@ def predict(X_pred):
|
|||
return predictions
|
||||
|
||||
|
||||
def eval_prediction(prediction):
|
||||
def eval_prediction(prediction, result):
|
||||
print("The Explained Variance: %.2f" % explained_variance_score(
|
||||
y_test, prediction))
|
||||
result, prediction))
|
||||
print("The Mean Absolute Error: %.2f volt dc" % mean_absolute_error(
|
||||
y_test, prediction))
|
||||
result, prediction))
|
||||
print("The Median Absolute Error: %.2f volt dc" % median_absolute_error(
|
||||
y_test, prediction))
|
||||
result, prediction))
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import tensorflow as tf
|
||||
|
||||
|
||||
def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=400):
|
||||
def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=366):
|
||||
return tf.estimator.inputs.pandas_input_fn(x=X,
|
||||
y=y,
|
||||
num_epochs=num_epochs,
|
||||
|
@ -15,11 +15,11 @@ class Net:
|
|||
|
||||
def __init__(self, feature_cols=__feature_cols):
|
||||
self.__regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols,
|
||||
hidden_units=[50, 50],
|
||||
hidden_units=[2],
|
||||
model_dir='tf_pywatts_model')
|
||||
|
||||
def train(self, training_data, training_results, steps):
|
||||
self.__regressor.train(input_fn=pywatts_input_fn(training_data, y=training_results, num_epochs=None, shuffle=True), steps=steps)
|
||||
self.__regressor.train(input_fn=pywatts_input_fn(training_data, y=training_results, num_epochs=None, shuffle=True, batch_size=336), steps=steps)
|
||||
|
||||
def evaluate(self, eval_data, eval_results):
|
||||
return self.__regressor.evaluate(input_fn=pywatts_input_fn(eval_data, y=eval_results, num_epochs=1, shuffle=False), steps=1)
|
||||
|
|
Loading…
Reference in a new issue