Fixed a few things

This commit is contained in:
reedts 2018-06-21 14:05:30 +02:00
parent 059dfea5d7
commit cab536f7f2
2 changed files with 30 additions and 15 deletions

View file

@ -4,15 +4,16 @@ import matplotlib.pyplot as pp
import pywatts.neural import pywatts.neural
from sklearn.metrics import explained_variance_score, mean_absolute_error, median_absolute_error from sklearn.metrics import explained_variance_score, mean_absolute_error, median_absolute_error
import pandas import pandas
from random import randint
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
df = pywatts.db.rows_to_df(list(range(1, 50))) df = pywatts.db.rows_to_df(list(range(1, 50)))
X = df[[col for col in df.columns if col != 'dc']] X = df
y = df['dc'] y = df['dc']
X_train, X_tmp, y_train, y_tmp = train_test_split(X, y, test_size=0.2, random_state=23) X_train, X_tmp, y_train, y_tmp = train_test_split(X, y, test_size=0.2, random_state=34)
X_test, X_val, y_test, y_val = train_test_split(X_tmp, y_tmp, test_size=0.5, random_state=23) X_test, X_val, y_test, y_val = train_test_split(X_tmp, y_tmp, test_size=0.5, random_state=23)
@ -20,20 +21,34 @@ feature_cols = [tf.feature_column.numeric_column(col) for col in X.columns]
n = pywatts.neural.Net(feature_cols=feature_cols) n = pywatts.neural.Net(feature_cols=feature_cols)
def input_data(json_str): def train_split(data, size):
X_values = {'dc': [], 'temp': [], 'wind': []}
y_values = []
for i in range(size):
rnd_idx = randint(0, data.size / data.shape[1] - 337)
X_values['dc'].extend(data['dc'][rnd_idx:rnd_idx + 336])
X_values['temp'].extend(data['temp'][rnd_idx:rnd_idx + 336])
X_values['wind'].extend(data['wind'][rnd_idx:rnd_idx + 336])
y_values.append(data['dc'][rnd_idx + 337])
return pandas.DataFrame.from_dict(X_values), pandas.DataFrame.from_dict({'dc': y_values})
def input_data(json_str, idx=0):
tmp_df = pandas.read_json(json_str) tmp_df = pandas.read_json(json_str)
return pandas.DataFrame.from_dict( return pandas.DataFrame.from_dict(
{'dc': [x for l in tmp_df['dc'] for x in l], {'dc': tmp_df['dc'][idx],
'temp': [x for l in tmp_df['temp'] for x in l], 'temp': tmp_df['temp'][idx],
'wind': [x for l in tmp_df['wind'] for x in l]} 'wind': tmp_df['wind'][idx]}
) )
def train(steps=100): def train(steps=100):
evaluation = [] evaluation = []
for i in range(steps): for i in range(steps):
n.train(X_train, y_train, steps=400) n.train(X_train, y_train, steps=100)
evaluation.append(n.evaluate(X_val, y_val)) evaluation.append(n.evaluate(X_val, y_val))
print("Training %s of %s" % ((i+1), steps)) print("Training %s of %s" % ((i+1), steps))
return evaluation return evaluation
@ -42,7 +57,7 @@ def train(steps=100):
def plot_training(evaluation): def plot_training(evaluation):
loss = [] loss = []
for e in evaluation: for e in evaluation:
loss.append(e['loss']) loss.append(e['average_loss'])
pp.plot(loss) pp.plot(loss)
@ -52,11 +67,11 @@ def predict(X_pred):
return predictions return predictions
def eval_prediction(prediction): def eval_prediction(prediction, result):
print("The Explained Variance: %.2f" % explained_variance_score( print("The Explained Variance: %.2f" % explained_variance_score(
y_test, prediction)) result, prediction))
print("The Mean Absolute Error: %.2f volt dc" % mean_absolute_error( print("The Mean Absolute Error: %.2f volt dc" % mean_absolute_error(
y_test, prediction)) result, prediction))
print("The Median Absolute Error: %.2f volt dc" % median_absolute_error( print("The Median Absolute Error: %.2f volt dc" % median_absolute_error(
y_test, prediction)) result, prediction))

View file

@ -1,7 +1,7 @@
import tensorflow as tf import tensorflow as tf
def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=400): def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=366):
return tf.estimator.inputs.pandas_input_fn(x=X, return tf.estimator.inputs.pandas_input_fn(x=X,
y=y, y=y,
num_epochs=num_epochs, num_epochs=num_epochs,
@ -15,11 +15,11 @@ class Net:
def __init__(self, feature_cols=__feature_cols): def __init__(self, feature_cols=__feature_cols):
self.__regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols, self.__regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols,
hidden_units=[50, 50], hidden_units=[2],
model_dir='tf_pywatts_model') model_dir='tf_pywatts_model')
def train(self, training_data, training_results, steps): def train(self, training_data, training_results, steps):
self.__regressor.train(input_fn=pywatts_input_fn(training_data, y=training_results, num_epochs=None, shuffle=True), steps=steps) self.__regressor.train(input_fn=pywatts_input_fn(training_data, y=training_results, num_epochs=None, shuffle=True, batch_size=336), steps=steps)
def evaluate(self, eval_data, eval_results): def evaluate(self, eval_data, eval_results):
return self.__regressor.evaluate(input_fn=pywatts_input_fn(eval_data, y=eval_results, num_epochs=1, shuffle=False), steps=1) return self.__regressor.evaluate(input_fn=pywatts_input_fn(eval_data, y=eval_results, num_epochs=1, shuffle=False), steps=1)