Add eval_training script
This commit is contained in:
parent
0eef892e0c
commit
d4da4ca121
2 changed files with 69 additions and 1 deletions
68
pywatts/eval_training.py
Normal file
68
pywatts/eval_training.py
Normal file
|
@ -0,0 +1,68 @@
|
||||||
|
import tensorflow as tf
|
||||||
|
import pywatts.db
|
||||||
|
from pywatts.routines import *
|
||||||
|
from pywatts import kcross
|
||||||
|
|
||||||
|
NUM_STATIONS_FROM_DB = 75
|
||||||
|
K = 2
|
||||||
|
NUM_EVAL_STATIONS = 40
|
||||||
|
TRAIN = True
|
||||||
|
PLOT = True
|
||||||
|
TRAIN_STEPS = 1
|
||||||
|
TOTAL_STEPS = 2
|
||||||
|
NUM_QUERIES = 1
|
||||||
|
PREDICT_QUERY = "query-sample_24hour.json"
|
||||||
|
PREDICT_RESULT = PREDICT_QUERY.replace("query", "result")
|
||||||
|
FIGURE_OUTPUT_DIR = "../figures/"
|
||||||
|
|
||||||
|
|
||||||
|
df = pywatts.db.rows_to_df(list(range(1, NUM_STATIONS_FROM_DB)))
|
||||||
|
X = df
|
||||||
|
y = df['dc']
|
||||||
|
|
||||||
|
|
||||||
|
# Define feature columns and initialize Regressor
|
||||||
|
feature_col = [tf.feature_column.numeric_column(str(idx)) for idx in range(336)]
|
||||||
|
n = pywatts.neural.Net(feature_cols=feature_col)
|
||||||
|
|
||||||
|
|
||||||
|
# Training data
|
||||||
|
(X_train, y_train, X_eval, y_eval) = kcross.split(df, K)
|
||||||
|
|
||||||
|
|
||||||
|
if TRAIN:
|
||||||
|
|
||||||
|
train_eval = None
|
||||||
|
|
||||||
|
color_gradient_base = (0.5, 0, 0)
|
||||||
|
color_step_width = (0.5/TOTAL_STEPS, 0, 0)
|
||||||
|
|
||||||
|
for i in range(TOTAL_STEPS):
|
||||||
|
# Train the model with the steps given
|
||||||
|
train_eval = kcross.train(n, X_train, y_train, X_eval, y_eval, TRAIN_STEPS)
|
||||||
|
|
||||||
|
for q in range(NUM_QUERIES):
|
||||||
|
|
||||||
|
pred_query = input_query("../sample_data/" + PREDICT_QUERY, q)
|
||||||
|
pred_result = input_result("../sample_data/" + PREDICT_RESULT, q)
|
||||||
|
|
||||||
|
prediction = predict24h(n, pred_query)
|
||||||
|
|
||||||
|
pp.figure(q)
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
pp.plot(pred_result, 'black')
|
||||||
|
|
||||||
|
pp.plot(prediction, color=color_gradient_base)
|
||||||
|
|
||||||
|
color_gradient_base = tuple([sum(x) for x in zip(color_gradient_base, color_step_width)])
|
||||||
|
|
||||||
|
for i in range(NUM_QUERIES):
|
||||||
|
pp.figure(i)
|
||||||
|
pp.savefig(FIGURE_OUTPUT_DIR+'{}.pdf'.format(i), orientation='landscape')
|
||||||
|
|
||||||
|
if PLOT:
|
||||||
|
# Plot training success rate (with 'average loss')
|
||||||
|
pywatts.routines.plot_training(train_eval)
|
||||||
|
|
||||||
|
exit()
|
|
@ -6,7 +6,7 @@ import matplotlib.pyplot as pp
|
||||||
|
|
||||||
PREDICT_QUERY = "query-sample_24hour.json"
|
PREDICT_QUERY = "query-sample_24hour.json"
|
||||||
PREDICT_RESULT = PREDICT_QUERY.replace("query", "result")
|
PREDICT_RESULT = PREDICT_QUERY.replace("query", "result")
|
||||||
QUERY_ID = 0
|
QUERY_ID = 4
|
||||||
|
|
||||||
|
|
||||||
pred_query = input_query("../sample_data/" + PREDICT_QUERY, QUERY_ID)
|
pred_query = input_query("../sample_data/" + PREDICT_QUERY, QUERY_ID)
|
||||||
|
|
Loading…
Reference in a new issue