Added stub for k-fold cross validation

This commit is contained in:
reedts 2018-08-06 13:28:27 +02:00
parent c2a489ce71
commit d568242cd0
6 changed files with 115 additions and 8 deletions

View file

@ -2,3 +2,4 @@ from pywatts import db
from pywatts import fetchdata
from pywatts import neural
from pywatts import main
from pywatts import kcross

61
pywatts/kcross.py Normal file
View file

@ -0,0 +1,61 @@
import random
import itertools
from pywatts import db
def split(data, k):
"""Returns (X_train, y_train, X_eval, y_eval)"""
# Training features as list of dictionaries (each dict is for ONE test run)
X_train = []
# Training labels as list of dictionaries (each dict is for ONE test run)
y_train = []
# Evaluation features as list of dictionaries (each i-th dict includes all features except X_train[i])
X_eval = []
# Evaluation labels as list of dictionaries (each i-th dict includes all labels except X_train[i])
y_eval = []
data_list = data['dc'].tolist()
# Each sample has 337 elements
samples = [data_list[i:i+337] for i in range(0, len(data_list) - 337, 337)]
# Randomly shuffle samples
random.shuffle(samples)
for i in range(0, len(samples), k):
# Create new dictionaries in the eval lists
X_eval.append({'dc': [x for x in itertools.chain(samples[i:i+k])]})
y_eval.append({'dc': []})
for i in range(len(X_eval)):
X_train.append({'dc': []})
y_train.append({'dc': []})
for c, d in enumerate(X_eval):
if c != i:
X_train[i]['dc'].extend(d['dc'])
y_train[i]['dc'].append(y_eval[c]['dc'])
print(X_train)
print(y_train)
exit(0)
return X_train, y_train, X_eval, y_eval
def train(nn, X_train, y_train, X_eval, y_eval, steps=10):
"""Trains the Network nn using k-cross-validation"""
evaluation = []
for count, train_data in enumerate(X_train):
for i in range(steps):
nn.train(train_data, y_train[count], batch_size=int(len(train_data['dc'])/336), steps=1)
print(X_eval[count])
print(len(X_eval[count]['dc']))
print(y_eval[count])
evaluation.append(nn.evaluate(X_eval[count], y_eval[count], batch_size=int(len(X_eval[count]['dc'])/336)))
print("Training %s: %s/%s" % (count, (i+1), steps))

View file

@ -1,11 +1,13 @@
import pandas
import numpy as np
import tensorflow as tf
def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=1):
# Create dictionary for features in hour 0 ... 335
features = {str(idx): [] for idx in range(336)}
dc_values = X['dc'].tolist()
#dc_values = X['dc'].tolist()
dc_values = X['dc']
# Iterate the empty dictionary always adding the idx-th element from the dc_values list
for idx, value_list in features.items():
@ -13,7 +15,8 @@ def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=1):
labels = None
if y is not None:
labels = y['dc'].values
#labels = y['dc'].values
labels = y['dc']
if labels is None:
dataset = tf.data.Dataset.from_tensor_slices(dict(features))
@ -38,8 +41,8 @@ class Net:
def train(self, training_data, training_results, batch_size, steps):
self.__regressor.train(input_fn=lambda: pywatts_input_fn(training_data, y=training_results, num_epochs=None, shuffle=True, batch_size=batch_size), steps=steps)
def evaluate(self, eval_data, eval_results):
return self.__regressor.evaluate(input_fn=lambda: pywatts_input_fn(eval_data, y=eval_results, num_epochs=1, shuffle=False), steps=1)
def evaluate(self, eval_data, eval_results, batch_size=1):
return self.__regressor.evaluate(input_fn=lambda: pywatts_input_fn(eval_data, y=eval_results, num_epochs=1, shuffle=False, batch_size=batch_size), steps=1)
def predict1h(self, predict_data):
return self.__regressor.predict(input_fn=lambda: pywatts_input_fn(predict_data, num_epochs=1, shuffle=False))

View file

@ -0,0 +1,41 @@
import peewee
import tensorflow as tf
import pywatts.db
from pywatts import kcross
NUM_STATIONS_FROM_DB = 75
K = 4
NUM_EVAL_STATIONS = 40
TRAIN = True
PLOT = True
TRAIN_STEPS = 4
df = pywatts.db.rows_to_df(list(range(1, NUM_STATIONS_FROM_DB)))
X = df
y = df['dc']
# Define feature columns and initialize Regressor
feature_col = [tf.feature_column.numeric_column(str(idx)) for idx in range(336)]
n = pywatts.neural.Net(feature_cols=feature_col)
# Training data
(X_train, y_train, X_eval, y_eval) = kcross.split(df, K)
train_eval = {}
if TRAIN:
# Train the model with the steps given
train_eval = kcross.train(n, X_train, y_train, X_eval, y_eval, TRAIN_STEPS)
if PLOT:
# Plot training success rate (with 'average loss')
pywatts.main.plot_training(train_eval)
exit()

View file

@ -19,5 +19,6 @@ n = pywatts.neural.Net(feature_cols=feature_col)
prediction = predict(n, pred_query)
print(prediction)
print(pred_result)
pywatts.main.eval_prediction(prediction, pred_result)

View file

@ -4,11 +4,11 @@ import pywatts.db
from pywatts.main import *
NUM_STATIONS_FROM_DB = 75
NUM_TRAIN_STATIONS = 60
NUM_EVAL_STATIONS = 15
NUM_TRAIN_STATIONS = 400
NUM_EVAL_STATIONS = 40
TRAIN = True
PLOT = True
TRAIN_STEPS = 10
TRAIN_STEPS = 50
df = pywatts.db.rows_to_df(list(range(1, NUM_STATIONS_FROM_DB)))