make members private and add feature_cols
This commit is contained in:
parent
6fd2e90bc1
commit
fb30c94427
2 changed files with 9 additions and 12 deletions
|
@ -1,3 +1,2 @@
|
||||||
from pywatts import db
|
from pywatts import db
|
||||||
from pywatts import fetchdata
|
from pywatts import fetchdata
|
||||||
from pywatts import neural
|
|
||||||
|
|
|
@ -2,13 +2,14 @@ import tensorflow as tf
|
||||||
|
|
||||||
|
|
||||||
class Net:
|
class Net:
|
||||||
regressor = None
|
__regressor = None
|
||||||
|
__feature_cols = [tf.feature_column.numeric_column(col) for col in ['dc', 'temp', 'wind']]
|
||||||
|
|
||||||
|
|
||||||
def __init__(self, feature_cols):
|
def __init__(self, feature_cols=__feature_cols):
|
||||||
self.regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols,
|
self.__regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols,
|
||||||
hidden_units=[50, 50],
|
hidden_units=[50, 50],
|
||||||
model_dir='tf_pywatts_model')
|
model_dir='tf_pywatts_model')
|
||||||
|
|
||||||
def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=400):
|
def pywatts_input_fn(X, y=None, num_epochs=None, shuffle=True, batch_size=400):
|
||||||
return tf.estimator.inputs.pandas_input_fn(x=X,
|
return tf.estimator.inputs.pandas_input_fn(x=X,
|
||||||
|
@ -18,14 +19,11 @@ class Net:
|
||||||
batch_size=batch_size)
|
batch_size=batch_size)
|
||||||
|
|
||||||
def train(self, training_data, steps):
|
def train(self, training_data, steps):
|
||||||
self.regressor.train(input_fn=self.pywatts_input_fn(training_data, num_epochs=None, shuffle=True), steps=steps)
|
self.__regressor.train(input_fn=self.pywatts_input_fn(training_data, num_epochs=None, shuffle=True), steps=steps)
|
||||||
|
|
||||||
def evaluate(self, eval_data):
|
def evaluate(self, eval_data):
|
||||||
self.regressor.evaluate(input_fn=self.pywatts_input_fn(eval_data, num_epochs=1, shuffle=False), steps=1)
|
self.__regressor.evaluate(input_fn=self.pywatts_input_fn(eval_data, num_epochs=1, shuffle=False), steps=1)
|
||||||
|
|
||||||
def predict1h(self, df):
|
def predict1h(self, df):
|
||||||
df = df.drop(['month', 'day', 'hour'])
|
df = df.drop(['month', 'day', 'hour'])
|
||||||
predictions = self.regressor.predict(input_fn=self.pywatts_input_fn(df, num_epochs=1, shuffle=False))
|
return self.__regressor.predict(input_fn=self.pywatts_input_fn(df, num_epochs=1, shuffle=False))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue