46 lines
1.1 KiB
Python
46 lines
1.1 KiB
Python
import os
|
|
import sys
|
|
|
|
import tensorflow as tf
|
|
|
|
import pywatts.db
|
|
from pywatts.routines import *
|
|
|
|
# get rid of TF debug message
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
if len(sys.argv) != 2:
|
|
print("Usage: python photovoltaic_gruppe4.py <file.json>")
|
|
exit(1)
|
|
|
|
json_file = sys.argv[1] # json file
|
|
|
|
oneH, queries = input_queries(json_file)
|
|
|
|
feature_col = [tf.feature_column.numeric_column(str(idx)) for idx in range(336)]
|
|
n = pywatts.neural.Net(feature_cols=feature_col)
|
|
|
|
predictions = []
|
|
total = len(queries)
|
|
for idx, query in enumerate(queries):
|
|
|
|
percent = idx / total
|
|
sys.stdout.write("\r")
|
|
progress = ""
|
|
for i in range(20):
|
|
if i < int(20 * percent):
|
|
progress += "="
|
|
else:
|
|
progress += " "
|
|
sys.stdout.write("[ %s ] %.2f%%" % (progress, percent * 100))
|
|
sys.stdout.flush()
|
|
|
|
if oneH:
|
|
predictions.extend(predict(n, query).astype('Float64').tolist())
|
|
else:
|
|
predictions.append(predict24h(n, query))
|
|
|
|
print(predictions, file=open("test_data_gruppe4.json", "w"))
|
|
|
|
sys.stdout.write("\r")
|
|
print("[ ==================== ] 100.00%")
|