pgpainless/pgpainless-core/src/main/java/org/pgpainless/key/util/PublicKeyParameterValidatio...

291 lines
11 KiB
Java

// SPDX-FileCopyrightText: 2021 Paul Schaub <vanitasvitae@fsfe.org>
//
// SPDX-License-Identifier: Apache-2.0
package org.pgpainless.key.util;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.math.BigInteger;
import java.security.SecureRandom;
import org.bouncycastle.bcpg.BCPGKey;
import org.bouncycastle.bcpg.DSAPublicBCPGKey;
import org.bouncycastle.bcpg.DSASecretBCPGKey;
import org.bouncycastle.bcpg.EdDSAPublicBCPGKey;
import org.bouncycastle.bcpg.EdSecretBCPGKey;
import org.bouncycastle.bcpg.ElGamalPublicBCPGKey;
import org.bouncycastle.bcpg.ElGamalSecretBCPGKey;
import org.bouncycastle.bcpg.RSAPublicBCPGKey;
import org.bouncycastle.bcpg.RSASecretBCPGKey;
import org.bouncycastle.openpgp.PGPEncryptedDataGenerator;
import org.bouncycastle.openpgp.PGPEncryptedDataList;
import org.bouncycastle.openpgp.PGPException;
import org.bouncycastle.openpgp.PGPPrivateKey;
import org.bouncycastle.openpgp.PGPPublicKey;
import org.bouncycastle.openpgp.PGPPublicKeyEncryptedData;
import org.bouncycastle.openpgp.PGPSignature;
import org.bouncycastle.openpgp.PGPSignatureGenerator;
import org.bouncycastle.openpgp.operator.PublicKeyDataDecryptorFactory;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.io.Streams;
import org.pgpainless.algorithm.HashAlgorithm;
import org.pgpainless.algorithm.PublicKeyAlgorithm;
import org.pgpainless.algorithm.SignatureType;
import org.pgpainless.algorithm.SymmetricKeyAlgorithm;
import org.pgpainless.exception.KeyIntegrityException;
import org.pgpainless.implementation.ImplementationFactory;
/**
* Utility class to verify keys against Key Overwriting (KO) attacks.
* This class of attacks is only possible if the attacker has access to the (encrypted) secret key material.
* To execute the attack, they would modify the unauthenticated parameters of the users public key.
* Using the modified public key in combination with the unmodified secret key material can then lead to the
* extraction of secret key parameters via weakly crafted messages.
*
* @see <a href="https://www.kopenpgp.com/">Key Overwriting (KO) Attacks against OpenPGP</a>
*/
public class PublicKeyParameterValidationUtil {
public static void verifyPublicKeyParameterIntegrity(PGPPrivateKey privateKey, PGPPublicKey publicKey)
throws KeyIntegrityException {
PublicKeyAlgorithm publicKeyAlgorithm = PublicKeyAlgorithm.requireFromId(publicKey.getAlgorithm());
boolean valid = true;
// Algorithm specific validations
BCPGKey key = privateKey.getPrivateKeyDataPacket();
if (key instanceof RSASecretBCPGKey) {
valid = verifyRSAKeyIntegrity(
(RSASecretBCPGKey) key,
(RSAPublicBCPGKey) publicKey.getPublicKeyPacket().getKey())
&& valid;
} else if (key instanceof EdSecretBCPGKey) {
valid = verifyEdDsaKeyIntegrity(
(EdSecretBCPGKey) key,
(EdDSAPublicBCPGKey) publicKey.getPublicKeyPacket().getKey())
&& valid;
} else if (key instanceof DSASecretBCPGKey) {
valid = verifyDsaKeyIntegrity(
(DSASecretBCPGKey) key,
(DSAPublicBCPGKey) publicKey.getPublicKeyPacket().getKey())
&& valid;
} else if (key instanceof ElGamalSecretBCPGKey) {
valid = verifyElGamalKeyIntegrity(
(ElGamalSecretBCPGKey) key,
(ElGamalPublicBCPGKey) publicKey.getPublicKeyPacket().getKey())
&& valid;
}
if (!valid) {
throw new KeyIntegrityException();
}
// Additional to the algorithm-specific tests further above, we also perform
// generic functionality tests with the key, such as whether it is able to decrypt encrypted data
// or verify signatures.
// These tests should be more or less constant time.
if (publicKeyAlgorithm.isSigningCapable()) {
valid = verifyCanSign(privateKey, publicKey);
}
if (publicKeyAlgorithm.isEncryptionCapable()) {
valid = verifyCanDecrypt(privateKey, publicKey) && valid;
}
if (!valid) {
throw new KeyIntegrityException();
}
}
/**
* Verify that the public key can be used to successfully verify a signature made by the private key.
* @param privateKey private key
* @param publicKey public key
* @return false if signature verification fails
*/
private static boolean verifyCanSign(PGPPrivateKey privateKey, PGPPublicKey publicKey) {
SecureRandom random = new SecureRandom();
PublicKeyAlgorithm publicKeyAlgorithm = PublicKeyAlgorithm.requireFromId(publicKey.getAlgorithm());
PGPSignatureGenerator signatureGenerator = new PGPSignatureGenerator(
ImplementationFactory.getInstance().getPGPContentSignerBuilder(publicKeyAlgorithm, HashAlgorithm.SHA256)
);
try {
signatureGenerator.init(SignatureType.TIMESTAMP.getCode(), privateKey);
byte[] data = new byte[512];
random.nextBytes(data);
signatureGenerator.update(data);
PGPSignature sig = signatureGenerator.generate();
sig.init(ImplementationFactory.getInstance().getPGPContentVerifierBuilderProvider(), publicKey);
sig.update(data);
return sig.verify();
} catch (PGPException e) {
return false;
}
}
/**
* Verify that the public key can be used to encrypt a message which can successfully be
* decrypted using the private key.
* @param privateKey private key
* @param publicKey public key
* @return false if decryption of a message encrypted with the public key fails
*/
private static boolean verifyCanDecrypt(PGPPrivateKey privateKey, PGPPublicKey publicKey) {
SecureRandom random = new SecureRandom();
PGPEncryptedDataGenerator encryptedDataGenerator = new PGPEncryptedDataGenerator(
ImplementationFactory.getInstance().getPGPDataEncryptorBuilder(SymmetricKeyAlgorithm.AES_256)
);
encryptedDataGenerator.addMethod(
ImplementationFactory.getInstance().getPublicKeyKeyEncryptionMethodGenerator(publicKey));
byte[] data = new byte[1024];
random.nextBytes(data);
ByteArrayOutputStream out = new ByteArrayOutputStream();
try {
OutputStream outputStream = encryptedDataGenerator.open(out, new byte[1024]);
outputStream.write(data);
encryptedDataGenerator.close();
PGPEncryptedDataList encryptedDataList = new PGPEncryptedDataList(out.toByteArray());
PublicKeyDataDecryptorFactory decryptorFactory =
ImplementationFactory.getInstance().getPublicKeyDataDecryptorFactory(privateKey);
PGPPublicKeyEncryptedData encryptedData =
(PGPPublicKeyEncryptedData) encryptedDataList.getEncryptedDataObjects().next();
InputStream decrypted = encryptedData.getDataStream(decryptorFactory);
out = new ByteArrayOutputStream();
Streams.pipeAll(decrypted, out);
decrypted.close();
} catch (IOException | PGPException e) {
return false;
}
return Arrays.constantTimeAreEqual(data, out.toByteArray());
}
private static boolean verifyEdDsaKeyIntegrity(EdSecretBCPGKey privateKey, EdDSAPublicBCPGKey publicKey)
throws KeyIntegrityException {
// TODO: Implement
return true;
}
private static boolean verifyDsaKeyIntegrity(DSASecretBCPGKey privateKey, DSAPublicBCPGKey publicKey)
throws KeyIntegrityException {
// Not sure what value to put here in order to have a "robust" primality check
// I went with 40, since that's what SO recommends:
// https://stackoverflow.com/a/6330138
final int certainty = 40;
BigInteger pG = publicKey.getG();
BigInteger pP = publicKey.getP();
BigInteger pQ = publicKey.getQ();
BigInteger pY = publicKey.getY();
BigInteger sX = privateKey.getX();
boolean pPrime = pP.isProbablePrime(certainty);
if (!pPrime) {
return false;
}
boolean qPrime = pQ.isProbablePrime(certainty);
if (!qPrime) {
return false;
}
// q > 160 bits
boolean qLarge = pQ.getLowestSetBit() > 160;
if (!qLarge) {
return false;
}
// q divides p - 1
boolean qDividesPminus1 = pP.subtract(BigInteger.ONE).mod(pQ).equals(BigInteger.ZERO);
if (!qDividesPminus1) {
return false;
}
// 1 < g < p
boolean gInBounds = BigInteger.ONE.max(pG).equals(pG) && pG.max(pP).equals(pP);
if (!gInBounds) {
return false;
}
// g^q = 1 mod p
boolean gPowXModPEquals1 = pG.modPow(pQ, pP).equals(BigInteger.ONE);
if (!gPowXModPEquals1) {
return false;
}
// y = g^x mod p
boolean yEqualsGPowXModP = pY.equals(pG.modPow(sX, pP));
if (!yEqualsGPowXModP) {
return false;
}
return true;
}
private static boolean verifyRSAKeyIntegrity(RSASecretBCPGKey secretKey, RSAPublicBCPGKey publicKey)
throws KeyIntegrityException {
// Verify that the public keys N is equal to private keys p*q
return publicKey.getModulus().equals(secretKey.getPrimeP().multiply(secretKey.getPrimeQ()));
}
/**
* Validate ElGamal public key parameters.
*
* Original implementation by the openpgpjs authors:
* https://github.com/openpgpjs/openpgpjs/blob/main/src/crypto/public_key/elgamal.js#L76-L143
* @param secretKey secret key
* @param publicKey public key
* @return true if supposedly valid, false if invalid
*/
private static boolean verifyElGamalKeyIntegrity(ElGamalSecretBCPGKey secretKey, ElGamalPublicBCPGKey publicKey) {
BigInteger p = publicKey.getP();
BigInteger g = publicKey.getG();
BigInteger y = publicKey.getY();
BigInteger one = BigInteger.ONE;
// 1 < g < p
if (g.min(one).equals(g) || g.max(p).equals(g)) {
return false;
}
// p-1 is large
if (p.bitLength() < 1023) {
return false;
}
// g^(p-1) mod p = 1
if (!g.modPow(p.subtract(one), p).equals(one)) {
return false;
}
// check g^i mod p != 1 for i < threshold
BigInteger res = g;
BigInteger i = BigInteger.valueOf(1);
BigInteger threshold = BigInteger.valueOf(2).shiftLeft(17);
while (i.compareTo(threshold) < 0) {
res = res.multiply(g).mod(p);
if (res.equals(one)) {
return false;
}
i = i.add(one);
}
// blinded exponentiation to check y = g^(r*(p-1)+x) mod p
SecureRandom random = new SecureRandom();
BigInteger x = secretKey.getX();
BigInteger r = new BigInteger(p.bitLength(), random);
BigInteger rqx = p.subtract(one).multiply(r).add(x);
if (!y.equals(g.modPow(rqx, p))) {
return false;
}
return true;
}
}