pgpainless/pgpainless-core/src/main/java/org/pgpainless/decryption_verification/OpenPgpInputStream.java

412 lines
14 KiB
Java

// SPDX-FileCopyrightText: 2022 Paul Schaub <vanitasvitae@fsfe.org>
//
// SPDX-License-Identifier: Apache-2.0
package org.pgpainless.decryption_verification;
import static org.bouncycastle.bcpg.PacketTags.COMPRESSED_DATA;
import static org.bouncycastle.bcpg.PacketTags.EXPERIMENTAL_1;
import static org.bouncycastle.bcpg.PacketTags.EXPERIMENTAL_2;
import static org.bouncycastle.bcpg.PacketTags.EXPERIMENTAL_3;
import static org.bouncycastle.bcpg.PacketTags.EXPERIMENTAL_4;
import static org.bouncycastle.bcpg.PacketTags.LITERAL_DATA;
import static org.bouncycastle.bcpg.PacketTags.MARKER;
import static org.bouncycastle.bcpg.PacketTags.MOD_DETECTION_CODE;
import static org.bouncycastle.bcpg.PacketTags.ONE_PASS_SIGNATURE;
import static org.bouncycastle.bcpg.PacketTags.PUBLIC_KEY;
import static org.bouncycastle.bcpg.PacketTags.PUBLIC_KEY_ENC_SESSION;
import static org.bouncycastle.bcpg.PacketTags.PUBLIC_SUBKEY;
import static org.bouncycastle.bcpg.PacketTags.RESERVED;
import static org.bouncycastle.bcpg.PacketTags.SECRET_KEY;
import static org.bouncycastle.bcpg.PacketTags.SECRET_SUBKEY;
import static org.bouncycastle.bcpg.PacketTags.SIGNATURE;
import static org.bouncycastle.bcpg.PacketTags.SYMMETRIC_KEY_ENC;
import static org.bouncycastle.bcpg.PacketTags.SYMMETRIC_KEY_ENC_SESSION;
import static org.bouncycastle.bcpg.PacketTags.SYM_ENC_INTEGRITY_PRO;
import static org.bouncycastle.bcpg.PacketTags.TRUST;
import static org.bouncycastle.bcpg.PacketTags.USER_ATTRIBUTE;
import static org.bouncycastle.bcpg.PacketTags.USER_ID;
import java.io.BufferedInputStream;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.nio.charset.Charset;
import org.bouncycastle.bcpg.BCPGInputStream;
import org.bouncycastle.openpgp.PGPCompressedData;
import org.bouncycastle.openpgp.PGPEncryptedData;
import org.bouncycastle.openpgp.PGPLiteralData;
import org.bouncycastle.openpgp.PGPOnePassSignature;
import org.pgpainless.algorithm.CompressionAlgorithm;
import org.pgpainless.algorithm.HashAlgorithm;
import org.pgpainless.algorithm.PublicKeyAlgorithm;
import org.pgpainless.algorithm.SignatureType;
import org.pgpainless.algorithm.StreamEncoding;
import org.pgpainless.algorithm.SymmetricKeyAlgorithm;
public class OpenPgpInputStream extends BufferedInputStream {
private static final byte[] ARMOR_HEADER = "-----BEGIN PGP ".getBytes(Charset.forName("UTF8"));
// Buffer beginning bytes of the data
public static final int MAX_BUFFER_SIZE = 8192 * 2;
private final byte[] buffer;
private final int bufferLen;
private boolean containsArmorHeader;
private boolean containsOpenPgpPackets;
private boolean isLikelyOpenPgpMessage;
public OpenPgpInputStream(InputStream in, boolean check) throws IOException {
super(in, MAX_BUFFER_SIZE);
mark(MAX_BUFFER_SIZE);
buffer = new byte[MAX_BUFFER_SIZE];
bufferLen = read(buffer);
reset();
if (check) {
inspectBuffer();
}
}
public OpenPgpInputStream(InputStream in) throws IOException {
this(in, true);
}
private void inspectBuffer() throws IOException {
if (determineIsArmored()) {
return;
}
determineIsBinaryOpenPgp();
}
private boolean determineIsArmored() {
if (startsWithIgnoringWhitespace(buffer, ARMOR_HEADER, bufferLen)) {
containsArmorHeader = true;
return true;
}
return false;
}
/**
* This method is still brittle.
* Basically we try to parse OpenPGP packets from the buffer.
* If we run into exceptions, then we know that the data is non-OpenPGP'ish.
*
* This breaks down though if we read plausible garbage where the data accidentally makes sense,
* or valid, yet incomplete packets (remember, we are still only working on a portion of the data).
*/
private void determineIsBinaryOpenPgp() throws IOException {
if (bufferLen == -1) {
// Empty data
return;
}
ByteArrayInputStream bufferIn = new ByteArrayInputStream(buffer, 0, bufferLen);
nonExhaustiveParseAndCheckPlausibility(bufferIn);
}
private void nonExhaustiveParseAndCheckPlausibility(ByteArrayInputStream bufferIn) throws IOException {
// Read the packet header
int hdr = bufferIn.read();
if (hdr < 0 || (hdr & 0x80) == 0) {
return;
}
boolean newPacket = (hdr & 0x40) != 0;
int tag = 0;
int bodyLen = 0;
boolean partial = false;
// Determine the packet length
if (newPacket) {
tag = hdr & 0x3f;
int l = bufferIn.read();
if (l < 192) {
bodyLen = l;
} else if (l <= 223) {
int b = bufferIn.read();
bodyLen = ((l - 192) << 8) + (b) + 192;
} else if (l == 255) {
bodyLen = (bufferIn.read() << 24) | (bufferIn.read() << 16) | (bufferIn.read() << 8) | bufferIn.read();
} else {
partial = true;
bodyLen = 1 << (l & 0x1f);
}
} else {
int lengthType = hdr & 0x3;
tag = (hdr & 0x3f) >> 2;
switch (lengthType) {
case 0:
bodyLen = bufferIn.read();
break;
case 1:
bodyLen = (bufferIn.read() << 8) | bufferIn.read();
break;
case 2:
bodyLen = (bufferIn.read() << 24) | (bufferIn.read() << 16) | (bufferIn.read() << 8) | bufferIn.read();
break;
case 3:
partial = true;
break;
default:
return;
}
}
// Negative body length -> garbage
if (bodyLen < 0) {
return;
}
// Try to unexhaustively parse the first packet bit by bit and check for plausibility
BCPGInputStream bcpgIn = new BCPGInputStream(bufferIn);
switch (tag) {
case RESERVED:
// How to handle this? Probably discard as garbage...
return;
case PUBLIC_KEY_ENC_SESSION:
int pkeskVersion = bcpgIn.read();
if (pkeskVersion <= 0 || pkeskVersion > 5) {
return;
}
// Skip Key-ID
for (int i = 0; i < 8; i++) {
bcpgIn.read();
}
int pkeskAlg = bcpgIn.read();
if (PublicKeyAlgorithm.fromId(pkeskAlg) == null) {
return;
}
containsOpenPgpPackets = true;
isLikelyOpenPgpMessage = true;
break;
case SIGNATURE:
int sigVersion = bcpgIn.read();
int sigType;
if (sigVersion == 2 || sigVersion == 3) {
int l = bcpgIn.read();
sigType = bcpgIn.read();
} else if (sigVersion == 4 || sigVersion == 5) {
sigType = bcpgIn.read();
} else {
return;
}
try {
SignatureType.valueOf(sigType);
} catch (IllegalArgumentException e) {
return;
}
containsOpenPgpPackets = true;
isLikelyOpenPgpMessage = true;
break;
case SYMMETRIC_KEY_ENC_SESSION:
int skeskVersion = bcpgIn.read();
if (skeskVersion == 4) {
int skeskAlg = bcpgIn.read();
if (SymmetricKeyAlgorithm.fromId(skeskAlg) == null) {
return;
}
// TODO: Parse S2K?
} else {
return;
}
containsOpenPgpPackets = true;
isLikelyOpenPgpMessage = true;
break;
case ONE_PASS_SIGNATURE:
int opsVersion = bcpgIn.read();
if (opsVersion == 3) {
int opsSigType = bcpgIn.read();
try {
SignatureType.valueOf(opsSigType);
} catch (IllegalArgumentException e) {
return;
}
int opsHashAlg = bcpgIn.read();
if (HashAlgorithm.fromId(opsHashAlg) == null) {
return;
}
int opsKeyAlg = bcpgIn.read();
if (PublicKeyAlgorithm.fromId(opsKeyAlg) == null) {
return;
}
} else {
return;
}
containsOpenPgpPackets = true;
isLikelyOpenPgpMessage = true;
break;
case SECRET_KEY:
case PUBLIC_KEY:
case SECRET_SUBKEY:
case PUBLIC_SUBKEY:
int keyVersion = bcpgIn.read();
for (int i = 0; i < 4; i++) {
// Creation time
bcpgIn.read();
}
if (keyVersion == 3) {
long validDays = (in.read() << 8) | in.read();
if (validDays < 0) {
return;
}
} else if (keyVersion == 4) {
} else if (keyVersion == 5) {
} else {
return;
}
int keyAlg = bcpgIn.read();
if (PublicKeyAlgorithm.fromId(keyAlg) == null) {
return;
}
containsOpenPgpPackets = true;
break;
case COMPRESSED_DATA:
int compAlg = bcpgIn.read();
if (CompressionAlgorithm.fromId(compAlg) == null) {
return;
}
containsOpenPgpPackets = true;
isLikelyOpenPgpMessage = true;
break;
case SYMMETRIC_KEY_ENC:
// No data to compare :(
containsOpenPgpPackets = true;
break;
case MARKER:
byte[] marker = new byte[3];
bcpgIn.readFully(marker);
if (marker[0] != 0x50 || marker[1] != 0x47 || marker[2] != 0x50) {
return;
}
containsOpenPgpPackets = true;
break;
case LITERAL_DATA:
int format = bcpgIn.read();
if (StreamEncoding.fromCode(format) == null) {
return;
}
containsOpenPgpPackets = true;
isLikelyOpenPgpMessage = true;
break;
case TRUST:
case USER_ID:
case USER_ATTRIBUTE:
// Not much to compare
containsOpenPgpPackets = true;
break;
case SYM_ENC_INTEGRITY_PRO:
int seipVersion = bcpgIn.read();
if (seipVersion != 1) {
return;
}
isLikelyOpenPgpMessage = true;
containsOpenPgpPackets = true;
break;
case MOD_DETECTION_CODE:
byte[] digest = new byte[20];
bcpgIn.readFully(digest);
containsOpenPgpPackets = true;
break;
case EXPERIMENTAL_1:
case EXPERIMENTAL_2:
case EXPERIMENTAL_3:
case EXPERIMENTAL_4:
return;
default:
containsOpenPgpPackets = false;
break;
}
}
private boolean startsWithIgnoringWhitespace(byte[] bytes, byte[] subsequence, int bufferLen) {
if (bufferLen == -1) {
return false;
}
for (int i = 0; i < bufferLen; i++) {
// Working on bytes is not trivial with unicode data, but its good enough here
if (Character.isWhitespace(bytes[i])) {
continue;
}
if ((i + subsequence.length) > bytes.length) {
return false;
}
for (int j = 0; j < subsequence.length; j++) {
if (bytes[i + j] != subsequence[j]) {
return false;
}
}
return true;
}
return false;
}
public boolean isAsciiArmored() {
return containsArmorHeader;
}
/**
* Return true, if the data is possibly binary OpenPGP.
* The criterion for this are less strict than for {@link #isLikelyOpenPgpMessage()},
* as it also accepts other OpenPGP packets at the beginning of the data stream.
*
* Use with caution.
*
* @return true if data appears to be binary OpenPGP data
*/
public boolean isBinaryOpenPgp() {
return containsOpenPgpPackets;
}
/**
* Returns true, if the underlying data is very likely (more than 99,9%) an OpenPGP message.
* OpenPGP Message means here that it starts with either an {@link PGPEncryptedData},
* {@link PGPCompressedData}, {@link PGPOnePassSignature} or {@link PGPLiteralData} packet.
* The plausability of these data packets is checked as far as possible.
*
* @return true if likely OpenPGP message
*/
public boolean isLikelyOpenPgpMessage() {
return isLikelyOpenPgpMessage;
}
public boolean isNonOpenPgp() {
return !isAsciiArmored() && !isBinaryOpenPgp();
}
}